GENERATORI DI VUOTO E DEPRESSORI PNEUMATICI

TABELLA RELATIVA ALLA QUANTITÀ D'ARIA ASPIRATA DAI GENERATORI, AI DIVERSI GRADI DI VUOTO	PAG. 8.01 ÷ 8.02
TABELLA RELATIVA AI TEMPI DI EVACUAZIONE DEI GENERATORI, AI DIVERSI GRADI DI VUOTO	PAG. 8.03 ÷ 8.04
GENERATORI DI VUOTO MONOSTADIO 15 01 10, 15 01 10 LP e 15 01 15 LP	PAG. 8.05 ÷ 8.06
GENERATORE DI VUOTO MONOSTADIO 15 03 10	PAG. 8.07 ÷ 8.08
GENERATORI DI VUOTO MONOSTADIO 15 05 08 SX e 15 05 10 SX	PAG. 8.09 ÷ 8.10
GENERATORE DI VUOTO MONOSTADIO 15 07 10 SX	PAG. 8.11 ÷ 8.12
GENERATORE DI VOOTO MONOSTADIO 13 07 10 3X GENERATORI DI VUOTO MONOSTADIO VG 03, VG 03 LP e VG 05 LP	PAG. 8.13 ÷ 8.14
GENERATORE DI VUOTO MONOSTADIO CON ESPULSORE 15 02 10, 15 02 10 LP e 15 02 15 LP	PAG. 8.10 7 8.10
GENERATORE DI VUOTO MONOSTADIO CON ESPULSORE 15 04 10 GENERATORI DI VUOTO MONOSTADIO CON ESPULSORE 15 06 08 SX e 15 06 10 SX	PAG. 8.17 ÷ 8.18
GENERATORI DI VUOTO MONOSTADIO CON ESPULSORE 19 00 06 5A 6 15 00 10 5A	PAG. 8.19 ÷ 8.20
GENERATORI DI VUOTO MONOSTADIO CON ESPULSORE FVG 3 e FVG 5	PAG. 8.21 ÷ 8.22
GENERATORI DI VUOTO MONOSTADIO CON ESPULSORE FVG 8 e FVG 12	PAG. 8.21-1 ÷ 8.22-1
GENERATORE DI VUOTO MONOSTADIO IN LINEA PVP 1	PAG. 8.23 ÷ 8.24
GENERATORI DI VUOTO MONOSTADIO IN LINEA GV 1, GV 2 e GV 3	PAG. 8.25 ÷ 8.26
GENERATORE DI VUOTO MONOSTADIO PVP 05	PAG. 8.27 ÷ 8.28
GENERATORE DI VUOTO MONOSTADIO PVP 2	PAG. 8.29 ÷ 8.30
GENERATORI DI VUOTO MONOSTADIO CON ESPULSORE 15 02 10, 15 02 10 LP e 15 02 15 LP GENERATORE DI VUOTO MONOSTADIO CON ESPULSORE 15 04 10 GENERATORI DI VUOTO MONOSTADIO CON ESPULSORE 15 06 08 SX e 15 06 10 SX GENERATORI DI VUOTO MONOSTADIO CON ESPULSORE FVG 3 e FVG 5 GENERATORI DI VUOTO MONOSTADIO CON ESPULSORE FVG 8 e FVG 12 GENERATORE DI VUOTO MONOSTADIO IN LINEA PVP 1 GENERATORI DI VUOTO MONOSTADIO IN LINEA GV 1, GV 2 e GV 3 GENERATORE DI VUOTO MONOSTADIO PVP 05 GENERATORE DI VUOTO MONOSTADIO PVP 2 GENERATORE DI VUOTO MONOSTADIO PVP 3 GENERATORI DI VUOTO MONOSTADIO PVP 2 MM1, PVP 2 MM2 e PVP 2 MM3 GENERATORI DI VUOTO MONOSTADIO PVP 7 SX / SXLP, PVP 14 SX / SXLP e PVP 18 SX / SXLP	PAG. 8.31 ÷ 8.32
GENERATORI DI VUOTO MONOSTADIO PVP 2 M, PVP 2 MM1, PVP 2 MM2 e PVP 2 MM3	PAG. 8.33 ÷ 8.34
GENERATORI DI VUOTO MONOSTADIO PVP 7 SX / SXLP, PVP 14 SX / SXLP e PVP 18 SX / SXLP	PAG. 8.35 ÷ 8.36
ACCESSORI PER GENERATORI DI VUOTO MONOSTADIO:	
- VALVOLE PNEUMATICHE AD OTTURATORE COASSIALE	PAG. 8.37
- VALVOLA PNEUMATICA A MANICOTTO	PAG. 8.37
SUPPORTI DI FISSAGGIO PER GENERATORI DI VUOTO MONOSTADIO	PAG. 8.38 ÷ 8.39
GRUPPO DI ALIMENTAZIONE VACUMANAGER SERIE VM	PAG. 8.38-1
ACCESSORI PER GENERATORI DI VUOTO MONOSTADIO: - VALVOLE PNEUMATICHE AD OTTURATORE COASSIALE - VALVOLA PNEUMATICA A MANICOTTO SUPPORTI DI FISSAGGIO PER GENERATORI DI VUOTO MONOSTADIO GRUPPO DI ALIMENTAZIONE VACUMANAGER SERIE VM ACCESSORI E RICAMBI PER GRUPPO DI ALIMENTAZIONE VACUMANAGER SERIE VM GENERATORI DI VUOTO MONOSTADIO E MULTIFUNZIONE MSVE 3 e MSVE 5 GENERATORI DI VUOTO MONOSTADIO E MULTIFUNZIONE MSVE 8 e MSVE 12 GENERATORI DI VUOTO MONOSTADIO E MULTIFUNZIONE MSVE 20 ACCESSORI E RICAMBI PER GENERATORI DI VIJOTO MULTIFINIZIONE MSVE 20	PAG. 8.39-1 ÷ 8.41-1
GENERATORI DI VUOTO MONOSTADIO E MULTIFUNZIONE MSVE 3 e MSVE 5	PAG. 8.40 ÷ 8.41
GENERATORI DI VUOTO MONOSTADIO E MULTIFUNZIONE MSVE 8 e MSVE 12	PAG. 8.42 ÷ 8.43
GENERATORI DI VUOTO MONOSTADIO E MULTIFUNZIONE MSVE 20	PAG. 8.44 ÷ 8.45
ACCESSORI E RICAMBI PER GENERATORI DI VUOTO MULTISTADIO E MULTIFUNZIONE, SERIE MSVE GENERATORI DI VUOTO MONOSTADIO E MULTIFUNZIONE SERIE AVG - GENERALITÀ	PAG. 8.45-1 ÷ 8.47-1
GENERATORI DI VUOTO MONOSTADIO E MULTIFUNZIONE SERIE AVG - GENERALITÀ	PAG. 8.46
GENERATORI DI VUOTO MONOSTADIO E MULTIFUNZIONE AVG 18 e AVG 25	PAG. 8.47 ÷ 8.48
ACCESSORI E RICAMBI PER GENERATORI DI VUOTO MONOSTADIO E MULTIFUNZIONE, SERIE AVG	PAG. 8.49 ÷ 8.50
	PAG. 8.51
GENERATORI DI VUOTO MULTISTADIO M 3 e M 7	PAG. 8.52 ÷ 8.53
GENERATORI DI VUOTO MULTISTADIO M 10, M 14 e M 18	PAG. 8.54 ÷ 8.55
GENERATORI DI VUOTO MULTISTADIO M 3 SSX e M 7 SSX	PAG. 8.56 ÷ 8.57
GENERATORI DI VUOTO MULTISTADIO M 10 SSX, M 14 SSX e M 18 SSX	PAG. 8.58 ÷ 8.59
GENERATORI DI VUOTO MULTISTADIO - GENERALITA GENERATORI DI VUOTO MULTISTADIO M 3 e M 7 GENERATORI DI VUOTO MULTISTADIO M 10, M 14 e M 18 GENERATORI DI VUOTO MULTISTADIO M 3 SSX e M 7 SSX GENERATORI DI VUOTO MULTISTADIO M 10 SSX, M 14 SSX e M 18 SSX SUPPORTI DI FISSAGGIO PER GENERATORI DI VUOTO MULTISTADIO SERIE M GENERATORI DI VUOTO MULTISTADIO E MULTIFUNZIONE SERIE MVG - GENERALITÀ GENERATORI DI VUOTO MULTISTADIO E MULTIFUNZIONE MVG 3 e MVG 7	PAG. 8.60
GENERATORI DI VUOTO MULTISTADIO E MULTIFUNZIONE SERIE MVG - GENERALITÀ	PAG. 8.61
GENERATORI DI VUOTO MULTISTADIO E MULTIFUNZIONE MVG 3 e MVG 7	PAG. 8.62 ÷ 8.63
GENERATORI DI VUOTO MULTISTADIO E MULTIFUNZIONE MVG 10 e MVG 14	PAG. 8.64 ÷ 8.65
ACCESSORI E RICAMBI PER GENERATORI DI VUOTO MULTISTADIO E MULTIFUNZIONE, SERIE MVG	PAG. 8.66 ÷ 8.68
GENERATORI DI VUOTO MULTISTADIO, MULTIFUNZIONE E MODULARI SERIE GVMM - GENERALITÀ	PAG. 8.69
GENERATORI DI VUOTO MULTISTADIO, MULTIFUNZIONE E MODULARI, GVMM 3 e GVMM 7	PAG. 8.70 ÷ 8.71
GENERATORI DI VUOTO MULTISTADIO, MULTIFUNZIONE E MODULARI, GVMM 10 e GVMM 14	PAG. 8.72 ÷ 8.73
MODULI DI VUOTO INTERMEDI, MULTISTADIO, MULTIFUNZIONE E MODULARI SERIE MI - GENERALITÀ	PAG. 8.74
MODULI DI VUOTO INTERMEDI MI 3 e MI 7	PAG. 8.75 ÷ 8.76
MODULI DI VUOTO INTERMEDI MI 10 e MI 14	PAG. 8.77 ÷ 8.78
ACCESSORI E RICAMBI PER GENERATORI E MODULI DI VUOTO SERIE GVMM e MI	PAG. 8.79 ÷ 8.81
COMPOSIZIONE DEI SISTEMI DI VUOTO MODULARI	PAG. 8.82
GENERATORI DI VUOTO MULTISTADIO PVP 12 MX / MXLP	PAG. 8.83 ÷ 8.84
GENERATORI DI VUOTO MULTISTADIO PVP 25 MX / MXLP	PAG. 8.85 ÷ 8.86
GENERATORI DI VUOTO MULTISTADIO PVP 40 M / MLP, PVP 70 M / MLP e PVP 100 M / MLP	PAG. 8.87 ÷ 8.88
GENERATORI DI VUOTO MULTISTADIO PVP 140 M / MLP, PVP 170 M / MLP e PVP 200 M / MLP	PAG. 8.89 ÷ 8.90
GENERATORI DI VUOTO MULTISTADIO PVP 250 M / MLP e PVP 300 M / MLP	PAG. 8.91 ÷ 8.92
ACCESSORI PER GENERATORI DI VUOTO PVP 40 M / MLP ÷ PVP 300 M / MLP	PAG. 8.93 ÷ 8.94
GENERATORI DI VUOTO MULTISTADIO PVP 25 MDX / MDXLP, PVP 35 MDX / MDXLP e PVP 50 MDX / MDXLP	PAG. 8.95 ÷ 8.96
GENERATORI DI VUOTO MULTISTADIO PVP 60 MDX / MDXLP e PVP 75 MDX / MDXLP	PAG. 8.97 ÷ 8.98
ACCESSORI PER GENERATORI DI VUOTO PVP 25 MDX / MDXLP ÷ PVP 75 MDX / MDXLP	PAG. 8.99 ÷ 8.100
SILENZIATORI	PAG. 8.101
GENERATORI DI VUOTO MULTISTADIO E MODULARI PVP 150 MD / MDLP ÷ PVP 750 MD / MDLP - GENERALITÀ	PAG. 8.102
GENERATORI DI VUOTO MULTISTADIO E MODULARI PVP 150 MD / MDLP e PVP 300 MD / MDLP	PAG. 8.103 ÷ 8.104
GENERATORI DI VUOTO MULTISTADIO E MODULARI PVP 450 MD / MDLP e PVP 600 MD / MDLP	PAG. 8.105 ÷ 8.106
GENERATORI DI VUOTO MULTISTADIO E MODULARI PVP 750 MD / MDLP	PAG. 8.107 ÷ 8.108
ACCESSORI PER GENERATORI DI VUOTO PVP 150 MD / MDLP ÷ PVP 750 MD / MDLP	PAG. 8.109 ÷ 8.110
GENERATORI DI VUOTO REGOLABILI CONVEYOR PVR 25 e PVR 50	PAG. 8.111 ÷ 8.112

GENERATORI DI VUOTO E DEPRESSORI PNEUMATICI

GENERATORI DI VUOTO REGOLABILI CONVEYOR PVR 100 e PVR 200	PAG. 8.113 ÷ 8.114
GENERATORI DI VUOTO A CARTUCCIA PVR 1 e PVR 4	PAG. 8.115
GENERATORE DI VUOTO A CARTUCCIA PVR 3 OT	PAG. 8.116
GENERATORE DI VUOTO CONVEYOR PVR 25 MS, CON SUPPORTO DI FISSAGGIO ALLE VENTOSE	PAG. 8.117
ACCESSORI E RICAMBI A RICHIESTA PER GENERATORE DI VUOTO PVR 25 MS	PAG. 8.118
ACCESSORI PER GENERATORI DI VUOTO REGOLABILI CONVEYOR	PAG. 8.119
GENERATORI DI FLUSSO VACUUM JET CX 7 e CX 10	PAG. 8.120 ÷ 8.121
GENERATORI DI FLUSSO VACUUM JET CX 13 e CX 19	PAG. 8.122 ÷ 8.123
GENERATORI DI FLUSSO VACUUM JET CX 25, CX 38 e CX 50	PAG. 8.124 ÷ 8.125
MINIDEPRESSORI PNEUMATICI DOP 06 e DOP 10	PAG. 8.126
MINIDEPRESSORI PNEUMATICI DOP 20	PAG. 8.127
DEPRESSORI PNEUMATICI DOP 25	PAG. 8.128
DEPRESSORI PNEUMATICI DOP 50	PAG. 8.129
DEPRESSORI PNEUMATICI DOP 100	PAG. 8.130
DEPRESSORI PNEUMATICI DOP 150	PAG. 8.131
DEPRESSORI PNEUMATICI DOP 300	PAG. 8.132
APPARECCHIATURA PNEUMATICA PER L'ALIMENTAZIONE DEI MINIDEPRESSORI DOP 06, DOP 10 e DOP 20	PAG. 8.133
APPARECCHIATURA PNEUMATICA PER L'ALIMENTAZIONE DEI DEPRESSORI DOP 50 e DOP 100	PAG. 8.134
APPARECCHIATURA PNEUMATICA PER L'ALIMENTAZIONE DEI DEPRESSORI DOP 150 e DOP 300	PAG. 8.134
ESECUZIONI SPECIALI DI GENERATORI DI VUOTO	PAG. 8.135

TABELLA RELATIVA ALLA QUANTITÀ D'ARIA ASPIRATA DAI GENERATORI, AI DIVERSI GRADI DI VUOTO

Articolo									uoto (-KPa)		
Generatore	Press. alim.	Consumo aria NI/s	0	10	alla į 20	oressione 30	di aliment 40	azione ott 50	imale 60	70	80	Vuoto max -KPa
15 01 10	6	0.9	0.80	0.66	0.61	0.55	0.44	0.29	0.19	0.09		85
15 01 10 LP	4	1.2	0.83	0.67	0.63	0.56	0.49	0.41	0.34	0.18	0.08	85
15 01 15 LP	4	2.2	1.38	1.22	1.11	1.00	0.90	0.69	0.44	0.30	0.16	85
15 02 10	6	0.9	0.80	0.66	0.61	0.55	0.44	0.29	0.19	0.09		85
15 02 10 LP	4	1.2	0.83	0.67	0.63	0.56	0.49	0.41	0.34	0.18	0.08	85
15 02 15 LP	4	2.2	1.39	1.22	1.11	1.00	0.90	0.69	0.44	0.30	0.16	85
15 03 10	6	1.6	1.39	1.30	1.15	1.00	0.89	0.77	0.69	0.44	0.04	85
15 04 10	6	1.6	1.39	1.30	1.15	1.00	0.89	0.77	0.69	0.44	0.04	85
15 05 08 SX	3.5	4.3	2.44	2.27	2.11	1.94	1.72	1.46	0.98	0.50	0.04	90
15 05 10 SX	3.5	5.5	3.47	3.24	2.86	2.49	2.22	1.92	1.72	1.20	0.65	90
15 06 08 SX	3.5	4.3	2.44	2.27	2.11	1.94	1.72	1.46	0.98	0.50	0.04	90
15 06 10 SX	3.5	5.5	3.47	3.24	2.86	2.49	2.22	1.92	1.72	1.20	0.65	90
15 07 10 SX	3.5	8.5	5.55	5.00	4.44	4.16	3.83	3.00	1.97	1.56	0.85	90
VG 03	6	0.9	0.80	0.66	0.61	0.55	0.44	0.29	0.19	0.09		85
VG 03 LP	4	1.2	0.83	0.67	0.63	0.56	0.49	0.41	0.34	0.18	0.08	85
VG 05 LP	4	2.2	1.39	1.22	1.11	1.00	0.90	0.69	0.44	0.30	0.16	85
FVG 3	4	1.2	0.83	0.67	0.63	0.56	0.49	0.41	0.34	0.18	0.08	85
FVG 5	4	2.2	1.39	1.22	1.11	1.00	0.90	0.69	0.44	0.30	0.16	85
GV 1	5	0.45	0.27	0.23	0.20	0.17	0.13	0.06	0.05	0.03		85
GV 2	5	0.45	0.27	0.23	0.20	0.17	0.13	0.06	0.05	0.03		85
GV 3	5	0.45	0.27	0.23	0.20	0.17	0.13	0.06	0.05	0.03		85
PVP 05	6	0.5	0.13	0.11	0.10	0.08	0.06	0.03	0.02	0.01		82
PVP 1	5	0.45	0.27	0.25	0.22	0.18	0.12	0.07	0.06	0.03		85
PVP 2	6	0.9	0.83	0.70	0.65	0.52	0.37	0.23	0.13	0.07		85
PVP 2 M	6	0.9	0.83	0.70	0.65	0.52	0.37	0.23	0.13	0.07		85
PVP 2 MM1	6	0.9	0.83	0.70	0.65	0.52	0.37	0.23	0.13	0.07		85
PVP 2 MM2	6	0.9	0.83	0.70	0.65	0.52	0.37	0.23	0.13	0.07		85
PVP 2 MM3	6	0.9	0.83	0.70	0.65	0.52	0.37	0.23	0.13	0.07		85
PVP 3	6	1.3	1.03	0.82	0.72	0.61	0.41	0.24	0.15	0.08		85
PVP 7 SX	6	3.2	2.58	2.38	2.19	2.02	1.44	0.97	0.86	0.54	0.05	85
PVP 7 SXLP	3	4.5	2.44	2.25	2.07	1.91	1.42	0.95	0.84	0.52	0.04	88
PVP 14 SX	6	4.8	3.75	3.46	3.19	2.95	2.19	1.47	1.29	0.80	0.07	85
PVP 14 SXLP	3	6.9	3.77	3.48	3.20	2.96	2.20	1.48	1.31	0.82	0.07	88
PVP 18 SX	6	6.4	5.00	4.62	4.25	3.93	2.92	1.97	1.75	1.10	0.10	85
PVP 18 SXLP	3	8.6	4.86	4.48	4.12	3.80	2.82	1.90	1.68	1.05	0.09	88
MSVE 3	4	1.2	0.83	0.67	0.63	0.56	0.49	0.41	0.34	0.18	0.08	85
MSVE 5	4	2.2	1.39	1.22	1.11	1.00	0.90	0.69	0.44	0.30	0.16	85
MSVE 8	3.5	4.3	2.44	2.27	2.11	1.94	1.72	1.46	0.98	0.50	0.04	90
MSVE 12	3.5	5.5	3.47	2.88	2.72	2.50	2.27	1.83	1.16	0.60	0.05	90
MSVE 20	4	8.0	5.55	5.00	4.44	4.16	3.83	3.00	1.97	1.56	0.85	90
AVG 18	6	6.4	4.83	4.58	4.04	3.58	2.72	1.90	1.68	1.07	0.10	85
AVG 25	6	9.6	7.00	6.63	5.86	5.18	3.94	2.76	2.44	1.54	0.15	85
M 3	5	0.8	1.00	0.83	0.61	0.34	0.18	0.12	0.10	0.07	0.03	85
M 7	5	1.4	1.72	1.28	0.89	0.50	0.37	0.27	0.16	0.11	0.05	85
M 10	5	1.9	2.61	2.00	1.55	0.80	0.64	0.50	0.29	0.19	0.09	85
M 14	5	2.5	3.50	2.33	1.72	1.00	0.89	0.67	0.29	0.19	0.03	85
M 18	5	3.6	5.00	3.50	2.78	2.02	1.02	0.75	0.33	0.24	0.11	85
M 3 SSX	5	0.8	1.00	0.83	0.61	0.34	0.18	0.13	0.44	0.30	0.14	85
M 7 SSX	5	1.4	1.72	1.28	0.89	0.54	0.16	0.12	0.16	0.07	0.05	85
M 10 SSX	5	1.9	2.61	2.00	1.55	0.80	0.64	0.50	0.29	0.19	0.09	85 85
M 14 SSX	5	2.5	3.50	2.33	1.72	1.00	0.89	0.67	0.35	0.24	0.11	85
M 18 SSX	5	3.6	5.00	3.50	2.78	2.02	1.02	0.75	0.44	0.30	0.14	85

TABELLA RELATIVA ALLA QUANTITÀ D'ARIA ASPIRATA DAI GENERATORI, AI DIVERSI GRADI DI VUOTO

Articolo								gradi di v		a)		
Generatore	Press. alim. bar	Consumo aria	0	10	alla 20	pressione 30	di aliment	tazione ott 50	timale 60	70	80	Vuoto max -KPa
1000												
MVG 3	5	0.8	0.89	0.69	0.41	0.23	0.18	0.12	0.10	0.07	0.03	85 05
MVG 7	5	1.3	1.83	1.44	1.11	0.63	0.41	0.25	0.16	0.11	0.05	85 85
MVG 10	5 5	1.7 2.1	2.55 3.40	1.85 2.45	1.30 1.84	0.75 1.05	0.64	0.48 0.61	0.30 0.36	0.20 0.24	0.09 0.11	85 85
MVG 14	5	0.8		0.66	0.38	0.20	0.88		0.30	0.24	0.11	85
GVMM 3 GVMM 7	5	1.3	0.83 1.78	1.30	0.38	0.20	0.16 0.44	0.11 0.29	0.09	0.00	0.02	85 85
GVMM 10	5	1.7	2.52	2.00	1.66	0.50	0.44	0.29	0.20	0.14	0.00	85
GVMM 14	5	2.1	3.35	2.42	1.84	0.99	0.80	0.40	0.22	0.10	0.10	85
MI 3	5	0.8	0.83	0.66	0.38	0.20	0.16	0.11	0.09	0.22	0.02	85
MI 7	5	1.3	1.78	1.30	0.98	0.56	0.44	0.29	0.20	0.14	0.06	85
MI 10	5	1.7	2.52	2.00	1.66	0.97	0.56	0.40	0.22	0.16	0.07	85
MI 14	5	2.1	3.35	2.42	1.84	0.99	0.80	0.58	0.34	0.22	0.10	85
PVP 12 MX	6	1.5	5.80	4.14	2.76	1.38	0.98	0.78	0.59	0.41	0.10	90
PVP 12 MXLP	3	2.3	5.00	2.27	1.66	1.05	0.88	0.77	0.64	0.42	0.22	86
PVP 25 MX	6	3.0	8.61	6.15	4.10	2.05	1.46	1.17	0.88	0.42	0.22	90
PVP 25 MXLP	3	4.5	9.44	3.77	2.77	1.72	1.58	1.36	1.11	0.72	0.37	86
PVP 40 M	6	3.2	11.6	8.32	5.55	2.77	1.98	1.58	1.19	0.72	0.47	90
PVP 40 MLP	3	4.4	11.4	5.42	3.45	2.19	2.03	1.72	1.34	0.95	0.54	88
PVP 70 M	6	6.6	22.2	15.8	10.5	5.29	3.77	3.02	2.27	1.58	0.90	90
PVP 70 MLP	3	8.9	20.3	9.65	6.15	3.88	3.61	3.05	2.36	1.66	0.94	88
PVP 100 M	6	9.8	30.0	21.4	14.2	7.14	5.10	4.08	3.06	2.14	1.22	90
PVP 100 MLP	3	13.3	26.4	12.5	8.00	5.07	4.70	4.00	3.10	2.20	1.25	88
PVP 140 M	6	13.0	42.2	30.1	20.1	10.0	7.18	5.74	4.31	3.02	1.72	90
PVP 140 MLP	3	17.8	38.3	18.3	11.6	7.37	6.84	5.80	4.50	3.20	1.80	88
PVP 170 M	6	16.3	50.5	36.1	24.0	12.0	8.59	6.87	5.17	3.61	2.06	90
PVP 170 MLP	3	22.2	45.8	21.8	13.8	8.81	8.18	6.94	5.39	3.82	2.16	88
PVP 200 M	6	19.4	55.5	39.6	26.4	13.2	9.44	7.55	5.68	3.97	2.27	90
PVP 200 MLP	3	26.6	52.8	25.2	16.0	10.1	9.44	8.00	6.20	4.40	2.50	88
PVP 250 M	6	24.0	77.7	55.5	37.0	18.5	13.2	10.5	7.90	5.50	3.10	90
PVP 250 MLP	3	33.6	69.4	34.0	23.5	14.0	11.5	9.80	7.60	5.30	3.00	88
PVP 300 M	6	29.0	88.8	63.4	42.3	21.1	15.1	12.0	9.10	6.35	3.63	90
PVP 300 MLP	3	39.3	83.3	41.5	27.5	17.0	14.5	11.4	8.80	6.10	3.40	88
PVP 25 MDX	6	3.2	11.9	8.5	5.7	2.8	2.0	1.6	1.2	0.8	0.5	90
PVP 25 MDXLP	3	4.4	9.7	4.7	3.5	2.2	2.0	1.7	1.4	1.0	0.6	88
PVP 35 MDX	6	4.8	15.8	11.3	7.5	3.8	2.7	2.1	1.6	1.1	0.6	90
PVP 35 MDXLP	3	6.5	13.0	6.2	4.7	3.0	2.7	2.3	1.8	1.3	0.7	88
PVP 50 MDX	6	6.5	18.8	13.5	9.0	4.5	3.2	2.6	1.9	1.4	0.7	90
PVP 50 MDXLP	3	8.6	16.1	7.7	5.8	3.7	3.3	2.8	2.2	1.5	0.8	88
PVP 60 MDX	6	8.2	25.5	18.2	12.2	6.1	4.3	3.5	2.6	1.8	1.0	90
PVP 60 MDXLP	3	11.0	19.3	9.3	7.0	4.4	4.0	3.4	2.7	1.9	1.0	88
PVP 75 MDX	6	9.8	28.6	20.4	13.6	6.8	4.8	3.9	2.9	2.0	1.2	90
PVP 75 MDXLP	3	13.2	22.5	10.8	8.1	5.1	4.6	3.9	3.1	2.2	1.2	88
PVP 150 MD	6	16.0	55.5	39.6	26.5	13.2	9.4	7.5	5.7	4.0	2.3	90
PVP 150 MDLP	3	22.6	47.2	24.5	15.9	10.3	9.3	7.5	4.7	3.2	1.8	88
PVP 300 MD	6	32.0	111.1	79.4	52.9	26.5	19.9	15.1	11.4	7.9	4.5	90
PVP 300 MDLP	3	45.5	94.4	49.0	31.9	20.7	18.6	15.1	9.3	6.5	3.7	88
PVP 450 MD	6	47.8	161.1	115.0	76.7	38.3	27.4	21.9	16.5	11.5	6.6	90
PVP 450 MDLP	3	65.8	138.8	72.7	46.9	30.5	27.4	22.2	13.8	9.6	5.5	88
PVP 600 MD	6	63.2	208.3	148.8	99.2	49.6	35.4	28.3	21.3	14.9	8.5	90
PVP 600 MDLP	3	87.7	186.1	96.7	62.9	40.8	36.8	29.8	18.5	12.9	6.8	88
PVP 750 MD	6	80.0	250.0	180.0	118.8	59.4	42.8	34.2	25.7	18.0	10.2	90
PVP 750 MDLP	3	110.0	222.2	115.5	75.1	48.8	43.9	35.6	22.0	15.4	8.8	88

TABELLA RELATIVA AI TEMPI DI EVACUAZIONE DEI GENERATORI, AI DIVERSI GRADI DI VUOTO

Articolo				Tempi d		•	= s/m³) ai	-		to (-KPa)		
Generatore	Press. alim.	Consumo aria	10	20	alla _I 30	pressione 40	di aliment 50	azione ott 60	timale 70	80	85	Vuoto max -KPa
15 01 10	6	0.9	139	278	472	727	1171	1628	2720	4928		85
15 01 10 LP	4	1.2	139	260	510	740	1070	1510	2430	4928	8740	85 85
15 01 10 LP	4	2.2	70	160	260	410	620	910	1500	2620	4490	85
15 01 15 LP	6	0.9	139	278	472	727	1171	1628	2720	4928	4490	85
15 02 10 15 02 10 LP	4	1.2	130	260	510	740	1070	1510	2430	4400	8740	85
15 02 10 LF	4	2.2	70	160	260	410	620	910	1500	2620	4490	85
15 03 10	6	1.6	77	154	261	403	649	902	1506	2730	3876	85
15 04 10	6	1.6	77	154	261	403	649	902	1506	2730	3876	85
15 05 08 SX	3.5	4.3	35	75	120	190	290	490	920	1530	2730	90
15 05 10 SX	3.5	5.5	25	54	90	140	220	320	570	980	2012	90
15 06 08 SX	3.5	4.3	35	75	120	190	290	490	920	1530	2730	90
15 06 10 SX	3.5	5.5	25	54	90	140	220	320	570	980	2012	90
15 07 10 SX	3.5	8.5	18	37	62	92	140	210	410	770	1220	90
VG 03	6	0.9	139	278	472	727	1171	1628	2720	4928		85
VG 03 LP	4	1.2	130	260	510	740	1070	1510	2430	4400	8740	85
VG 05 LP	4	2.2	70	160	260	410	620	910	1500	2620	4490	85
FVG 3	4	1.2	130	260	510	740	1070	1510	2430	4400	8740	85
FVG 5	4	2.2	70	160	260	410	620	910	1500	2620	4490	85
GV 1	5	0.45	394	788	1339	2063	3322	4617	7711	13973	19841	85
GV 2	5	0.45	394	788	1339	2063	3322	4617	7711	13973	19841	85
GV 3	5	0.45	394	788	1339	2063	3322	4617	7711	13973	19841	85
PVP 05	6	0.5	786	1572	2678	4126	6644	9210	15420	27870		82
PVP 1	5	0.45	393	786	1336	2057	3312	4605	7690	13935	19787	85
PVP 2	6	0.9	128	257	438	675	1087	1511	2523	4572	6492	85
PVP 2M	6	0.9	128	257	438	675	1087	1511	2523	4572	6492	85
PVP 2 MM1	6	0.9	128	257	438	675	1087	1511	2523	4572	6492	85
PVP 2 MM2	6	0.9	128	257	438	675	1087	1511	2523	4572	6492	85
PVP 2 MM3	6	0.9	128	257	438	675	1087	1511	2523	4572	6492	85
PVP 3	6	1.3	104	207	353	544	857	1217	2033	3684	5232	85
PVP 7 SX	6	3.2	33	70	115	173	289	492	796	1418	2532	85
PVP 7 SXLP	3	4.5	34	74	121	200	315	487	760	1348	2410	88
PVP 14 SX	6	4.8	23	49	80	120	200	340	550	980	1750	85
PVP 14 SXLP	3	6.9	24	52	85	140	220	340	530	940	1680	88
PVP 18 SX	6	6.4	18	38	62	93	155	264	420	750	1340	85
PVP 18 SXLP	3	8.6	18	39	64	105	165	255	398	706	1260	88
MSVE 3	4	1.2	130	260	510	740	1070	1510	2430	4400	8740	85
MSVE 5	4	2.2	70	160	260	410	620	910	1500	2620	4490	85
MSVE 8	3.5	4.3	35	75	120	190	290	490	920	1530	2730	90
MSVE 12	3.5	5.5	27	57	100	150	230	350	740	1200	2150	90
MSVE 20	4	8.0	18	37	62	92	140	210	410	770	1220	90
AVG 18	6	6.4	22	44	75	115	185	258	430	798	1107	85
AVG 25	6	9.6	15	30	52	80	128	178	297	538	764	85
M 3	5	0.8	106	244	491	969	1642	2398	4004	7128	10122	85
M 7	5	1.4	61	142	285	563	954	1394	2328	4144	5885	85
M 10	5	1.9	40	93	188	371	629	918	1534	2731	3878	85
M 14	5	2.5	30	69	140	276	469	685	1144	2036	2892	85
M 18	5	3.6	21	48	98	193	327	478	799	1423	2020	85
M 3 SSX	5	0.8	106	244	491	969	1642	2398	4004	7128	10122	85
M 7 SSX	5	1.4	61	142	285	563	954	1394	2328	4144	5885	85
M 10 SSX	5	1.9	40	93	188	371	629	918	1534	2731	3878	85
M 14 SSX	5	2.5	30	69	140	276	469	685	1144	2036	2892	85
M 18 SSX	5	3.6	21	48	98	193	327	478	799	1423	2020	85

Per calcolare il tempo di svuotamento di un volume V, applicare la formula seguente: $t_1 = t \times V$

t₁ = tempo da calcolare (ms) t = tempo indicato in tabella (ms) nella colonna del grado di vuoto desiderato (-KPa)

V = Volume da svuotare (I)

TABELLA RELATIVA AI TEMPI DI EVACUAZIONE DEI GENERATORI, AI DIVERSI GRADI DI VUOTO

Articolo				Tempi di		one (ms/l=	•	_		(-KPa)		
Generatore	Press. alim.	Consumo aria NI/s	10	20	alla p 30	ressione o	li alimenta 50	nzione otti 60	male 70	80	85	Vuoto max -KPa
MVG 3	5	0.8	119	274	552	1088	1845	2694	4499	8009	11373	85
		0.8 1.3	58			529				3895	5531	85 85
MVG 7	5			133	268		897	1310	2188			
MVG 10	5	1.7	41	95	192	379	642	938	1567	2790	3962	85
MVG 14	5	2.1	31	71	144	284	482	704	1175	2092	2971	85
GVMM 3	5	0.8	128	294	592	1167	1978	2889	4824	8588	12195	85
GVMM 7	5	1.3	59	137	275	543	921	1344	2245	3997	5676	85
GVMM 10	5	1.7	42	97	195	384	651	951	1589	2828	4016	85
GVMM 14	5	2.1	31	72	146	288	489	714	1193	2124	3016	85
MI 3	5	0.8	128	294	592	1167	1978	2889	4824	8588	12195	85
MI 7	5	1.3	59	137	275	543	921	1344	2245	3997	5676	85
MI 10	5	1.7	42	97	195	384	651	951	1589	2828	4016	85
MI 14	5	2.1	31	72	146	288	489	714	1193	2124	3016	85
PVP 12 MX	6	1.5	15	38	85	204	365	559	929	1607	5916	90
PVP 12 MXLP	3	2.3	22	56	120	240	410	650	975	1950	7160	86
PVP 25 MX	6	3.0	10	26	57	137	246	377	626	1083	3986	90
PVP 25 MXLP	3	4.5	16	41	83	165	290	460	690	1380	5070	86
PVP 40 M	6	3.2	7	19	42	101	182	278	462	799	2943	90
PVP 40 MLP	3	4.4	12	28	58	116	158	250	382	764	2820	88
PVP 70 M	6	6.6	4	10	22	53	95	146	242	419	1544	90
PVP 70 MLP	3	8.9	9	21	44	88	120	190	290	580	2150	88
PVP 100 M	6	9.8	3	7	16	39	70	108	179	310	1144	90
PVP 100 MLP	3	13.3	7	16	34	68	93	147	224	448	1650	88
PVP 140 M	6	13.0	2.1	5.3	11.7	28.0	50.2	76.9	127	220	812	90
PVP 140 MLP	3	17.8	3.6	8.4	17.7	35.4	48.3	76.5	116	233	860	88
PVP 170 M	6	16.3	1.7	4.4	9.7	23.4	42.0	64.2	106	184	678	90
PVP 170 MLP	3	22.2	3.0	7.1	14.9	29.9	40.6	64.2	98.0	196	720	88
PVP 200 M	6	19.4	1.6	4.0	8.9	21.3	38.2	58.4	97.0	167	618	90
PVP 200 MLP	3	26.6	2.8	6.5	13.6	27.3	37.2	58.8	89.7	180	665	88
PVP 250 M	6	24.0	1.1	2.9	6.4	15.2	27.3	41.8	69.3	119	442	90
PVP 250 MLP	3	33.6	2.0	4.6	9.6	19.3	26.3	41.5	63.5	127	468	88
PVP 300 M	6	29.0	1.0	2.5	5.5	13.3	23.8	36.5	60.6	104	386	90
PVP 300 MLP	3	39.3	1.7	3.9	8.2	16.4	22.3	35.3	54.0	104	398	88
PVP 25 MDX	6	3.2	7.5	18.8	41.3	99.3	177	271	451	781	2874	90
PVP 25 MDXLP	3	4.4	13.0	33.3	67.2	134	238	376	564	1128	4151	88
PVP 35 MDXLP	6	4.4	6.5	14.1	31.2	74.9	134	205	340	589	2618	90
PVP 35 MDXLP	3	6.5	9.8	25.2	50.9	101	180	284	427	854	3145	88
PVP 50 MDX	6	6.5	9.0 4.7	11.9	26.2	62.8	112	172	285	494	1818	90
PVP 50 MDXLP											2534	
	3	8.6	7.9	20.3	41.0	82.0	145	229	344	688		88
PVP 60 MDX	6	8.2	3.5	8.8	19.3	46.4	83.0	127	211	365 570	1343	90
PVP 60 MDXLP	3	11.0	6.6	16.8	34.0	68.0	120	190	285	570	2098	88
PVP 75 MDX	6	9.8	3.1	7.8	17.2	41.4	74.2	113	188	326	1200	90
PVP 75 MDXLP	3	13.2	5.7	14.5	29.2	58.4	103	163	245	490	1805	88
PVP 150 MD	6	16.0	1.6	4.0	8.9	21.3	38.2	58.4	97.0	167	618	90
PVP 150 MDLP	3	22.6	2.9	7.5	15.0	30.1	53.3	84.2	126	252	930	88
PVP 300 MD	6	32.0	8.0	2.0	4.4	10.6	19.1	29.2	48.5	83.9	386	90
PVP 300 MDLP	3	45.5	2.0	5.2	10.5	21.0	37.2	58.7	88.0	176	650	88
PVP 450 MD	6	47.8	0.5	1.4	3.0	7.4	13.2	20.1	33.5	57.9	213	90
PVP 450 MDLP	3	65.8	1.2	3.0	6.2	12.4	22.0	34.7	52.0	104	383	88
PVP 600 MD	6	63.2	0.4	1.0	2.4	5.7	10.2	15.6	25.9	44.8	165	90
PVP 600 MDLP	3	87.7	8.0	2.0	4.1	8.2	14.6	23.1	34.7	69.4	256	88
PVP 750 MD	6	80.0	0.3	0.8	1.8	4.3	7.7	11.8	19.5	33.8	125	90
PVP 750 MDLP	3	110.0	0.5	1.3	2.6	5.2	9.2	14.5	21.7	43.4	160	88

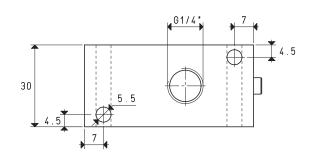
Per calcolare il tempo di svuotamento di un volume V, applicare la formula seguente: $t_1 = t \times V$

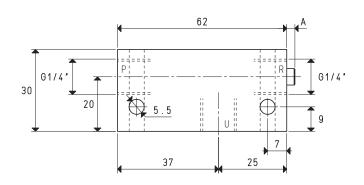
t₁ = tempo da calcolare (ms)
 t = tempo indicato in tabella (ms) nella colonna del grado di vuoto desiderato (-KPa)

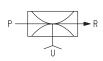
V = Volume da svuotare (I)

GENERATORI DI VUOTO MONOSTADIO 15 01 10, 15 01 10 LP, 15 01 15 LP e 15 03 10

Il funzionamento dei generatori di vuoto monostadio è basato sul principio Venturi.

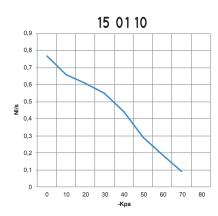

Alimentando il generatore con aria compressa in P, alla connessione U si genera una depressione e in R viene scaricata l'aria di alimentazione con quella aspirata.

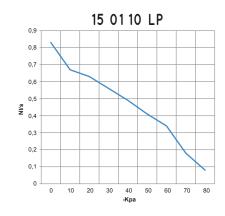

Interrompendo l'alimentazione dell'aria in P, cessa l'effetto vuoto in U. La pressione d'alimentazione ottimale dell'aria è normalmentedi 6 bar, ma per i generatori con indicate le lettere LP nel loro articolo, è sufficiente una pressione inferiore a 4 bar per ottenere le migliori prestazioni. Su richiesta, i generatori di vuoto possono essere forniti con silenziatore ad alto abbattimento sonoro, installato sulla connessione di scarico R.


I generatori di vuoto monostadio, sono generalmente impiegati per l'asservimento di ventose, per la presa e la movimentazione di oggetti non porosi e di apparecchiature in cui la richiesta della portata è limitata.

Sono interamente realizzati in alluminio anodizzato, con eiettori in ottone o alluminio, a seconda degli articoli.

P=CONNESSIONE ARIA COMPRE	SSA R=S	CARICO	U=CC	ONNESSIONE	VUOTO						
Art.			15 01 10)	15	5 01 10 L	.Р	15 01 15 LP			
Quantità di aria aspirata	m³/h	2.7	2.8	2.9	2.6	2.8	3.0	4.8	4.9	5.0	
Massimo grado di vuoto	-KPa	55	70	85	43	61	85	40	61	85	
Pressione finale	mbar ass.	450	300	150	570	390	150	600	390	150	
Pressione di alimentazione	bar	4	5	6	2	3	4	2	3	4	
Pressione di alimentazione ottimale	bar			6			4			4	
Consumo di aria	NI/s	0.7	0.8	0.9	0.7	0.9	1.2	1.3	1.7	2.2	
Temperatura di lavoro	°C		-	-20 / +100		-	20 / +100			-20 / +100	
Livello di rumorosità alla pressione di alimentazione ottimale	dB(A)			63			62			71	
Peso	g			140			130			130	
A	mm						3			5	

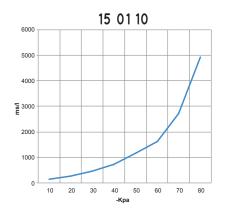

N.B. Tutti i valori di vuoto indicati in tabella sono validi alla normale pressione atmosferica di 1013 mbar ed ottenuti con una pressione di alimentazione costante.

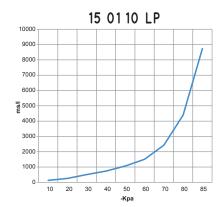

L'alimentazione dei generatori di vuoto, deve essere effettuata con aria compressa non lubrificata, filtrazione 5 micron, secondo norma ISO 8573-1 classe 4.

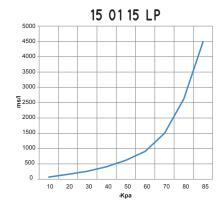


GENERATORI DI VUOTO MONOSTADIO 15 01 10, 15 01 10 LP e 15 01 15 LP

Portata d'aria (NI/s) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale

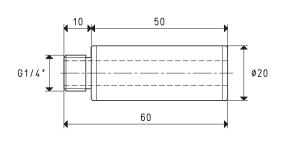






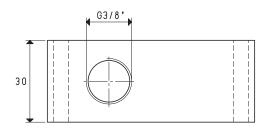
Generatore.	Press. alim.	Consumo aria		Portata d'aria (NI/s) ai diversi gradi di vuoto (-KPa) alla pressione di alimentazione ottimale									
art.	bar	NI/s	0	10	20	30	40	50	60	70	80	-KPa	
15 01 10	6.0	0.9	0.80	0.66	0.61	0.55	0.44	0.29	0.19	0.09		85	
15 01 10 LP	4.0	1.2	0.83	0.67	0.63	0.56	0.49	0.41	0.34	0.18	0.08	85	
15 01 15 LP	4.0	2.2	1.39	1.22	1.11	1.00	0.90	0.69	0.44	0.30	0.16	85	

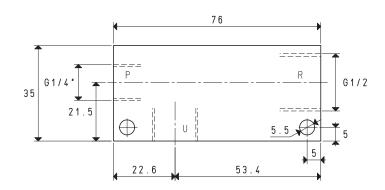
Tempi di evacuazione (ms/l=s/m³) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale

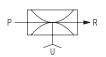


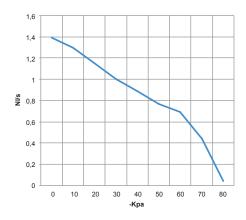
Generatore.	Press. alim.	Consumo aria	alia pressione di alimentazione ottimale									Vuoto max
art.	bar	NI/s	10	20	30	40	50	60	70	80	85	-KPa
15 01 10	6.0	0.9	139	278	472	727	1171	1628	2720	4928		85
15 01 10 LP	4.0	1.2	130	260	510	740	1070	1510	2430	4400	8740	85
15 01 15 LP	4.0	2.2	70	160	260	410	620	910	1500	2620	4490	85

ACCESSORI A RICHIESTA

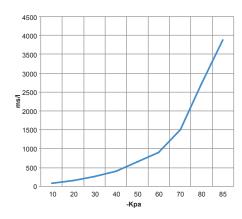

Silenziatore art. SSX 1/4"





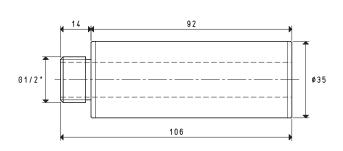

P=CONNESSIONE ARIA COMPRE	SSA R=SCARICO	U=CONNESSIONE VU	JOTO		
Art.			15 03 10		
Quantità di aria aspirata	m³/h	4.8	5	5	
Massimo grado di vuoto	-KPa	62	78	85	
Pressione finale	mbar ass.	380	220	150	
Pressione di alimentazione	bar	4	5	6	
Pressione di alimentazione ottimale	bar			6	
Consumo di aria	NI/s	1.1	1.3	1.6	
Temperatura di lavoro	°C			-20 / +80	
Livello di rumorosità alla pressione di alimentazione ottimale	dB(A)			79	
Peso	g			179	

N.B. Tutti i valori di vuoto indicati in tabella sono validi alla normale pressione atmosferica di 1013 mbar ed ottenuti con una pressione di alimentazione costante. L'alimentazione dei generatori di vuoto, deve essere effettuata con aria compressa non lubrificata, filtrazione 5 micron, secondo norma ISO 8573-1 classe 4.


GENERATORE DI VUOTO MONOSTADIO 15 03 10

Portata d'aria (NI/s) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale

Generatore.	Press. alim.	Consumo aria		Por	Portata d'aria (NI/s) ai diversi gradi di vuoto (-KPa) alla pressione di alimentazione ottimale								
art.	bar	NI/s	0	10	20	30	40	50	60	70	80	-KPa	
15 03 10	6.0	1.6	1.39	1.30	1.15	1.00	0.89	0.77	0.69	0.44	0.04	85	

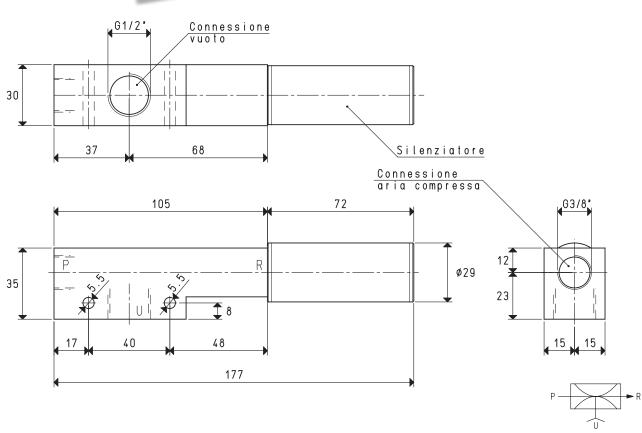

Tempi di evacuazione (ms/l=s/m³) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale

Generatore.	Press. alim.	Consumo aria	Те	Tempi di evacuazione (ms/l = s/m³) ai diversi gradi di vuoto (-KPa) alla pressione di alimentazione ottimale									
art.	bar NI/s	INI/S	10	20	30	40	50	60	70	80	85	-KPa	
15 03 10	6.0	1.6	77	154	261	403	649	902	1506	2730	3876	85	

ACCESSORI A RICHIESTA

Silenziatore art. SSX 1/2"

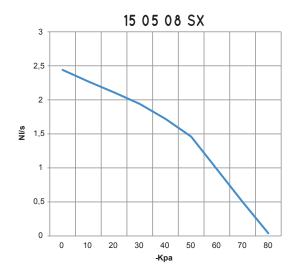
GENERATORI DI VUOTO MONOSTADIO 15 05 08 SX, 15 05 10 SX e 15 07 10 SX

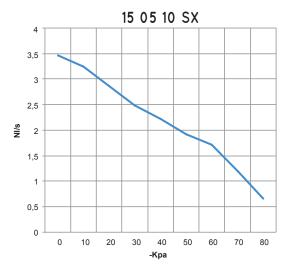


Anche il funzionamento di questi generatori di vuoto monostadio, è basato sul principio Venturi; si differenziano da quelli precedentemente descritti, per la maggiore portata d'aspirazione, la minore pressione dell'aria d'alimentazione, inferiore a 4 bar per ottenere le migliori prestazioni e per il silenziatore SSX ... , ad alto abbattimento sonoro, installato di serie sulla connessione di scarico R.

Sono anch'essi impiegati nel settore automotive per l'asservimento di ventose, per la manipolazione e la presa di oggetti poco porosi, di lamiere, pannelli di legno, lastre di marmo e di vetro e similari.

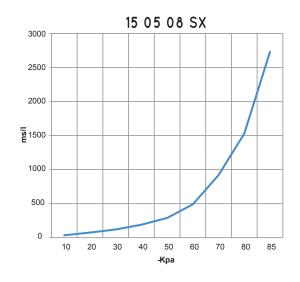
Sono interamente realizzati in alluminio anodizzato.

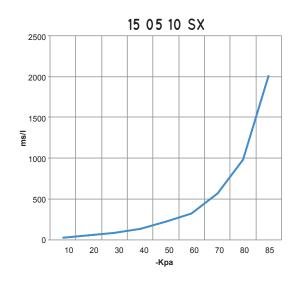




P=CONNESSIONE ARIA COMPRE	SSA R=SCARIO	CO U=C	ONNESSIO	NE VUOTO				
Art.		•	15 05 08 SX			15 05 10 S	SX	
Quantità di aria aspirata	m³/h	8.0	8.6	8.8	12.0	12.2	12.5	
Massimo grado di vuoto	-KPa	40	60	90	40	60	90	
Pressione finale	mbar ass.	600	400	100	600	400	100	
Pressione di alimentazione	bar	2	3	3.5	2	3	3.5	
Pressione di alimentazione ottimale	bar			3.5			3.5	
Consumo di aria	NI/s	2.8	3.8	4.3	3.7	5	5.5	
Temperatura di lavoro	°C			-20 / +80			-20 / +80	
Livello di rumorosità alla pressione di alimentazione ottimale	dB(A)			60			63	
Peso	g			310			306	
Ricambi		1	5 05 08 SX		15 05 10 SX			
Silenziatore	art.		SSX 3/8"		SSX 3/8"			

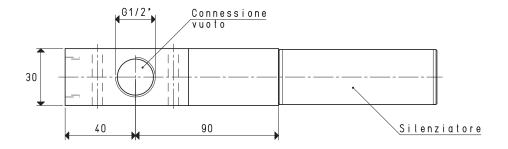
N.B. Tutti i valori di vuoto indicati in tabella sono validi alla normale pressione atmosferica di 1013 mbar ed ottenuti con una pressione di alimentazione costante. L'alimentazione dei generatori di vuoto, deve essere effettuata con aria compressa non lubrificata, filtrazione 5 micron, secondo norma ISO 8573-1 classe 4.

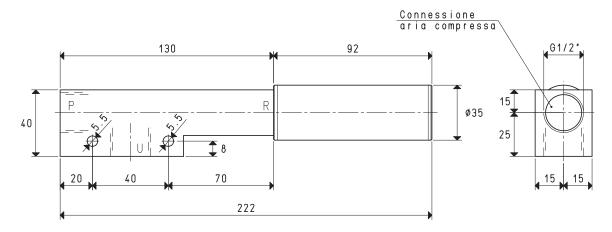

Portata d'aria (NI/s) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale



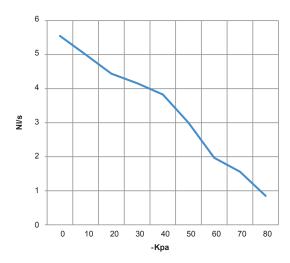
Generatore.	Press. alim.	Consumo aria		Poi	rtata d'ar alla pr	ia (NI/s) a essione d	ai diversi li aliment	gradi di v azione o	/uoto (-K ttimale	Pa)		Vuoto max
art.	bar	NI/s	0	10	20	30	40	50	60	70	80	-KPa
15 05 08 SX	3.5	4.3	2.44	2.27	2.11	1.94	1.72	1.46	0.98	0.50	0.04	90
15 05 10 SX	3.5	5.5	3.47	3.24	2.86	2.49	2.22	1.92	1.72	1.20	0.65	90

Tempi di evacuazione (ms/l=s/m³) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale



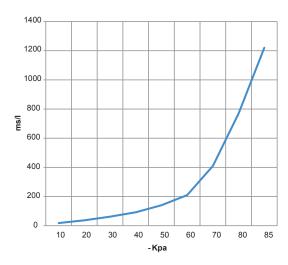


Generatore.	Press. alim.	Consumo aria	Te	Tempi di evacuazione (ms/l = s/m³) ai diversi gradi di vuoto (-KPa) alla pressione di alimentazione ottimale								
art.	bar	NI/s	10	20	30	40	50	60	70	80	85	-KPa
15 05 08 SX	3.5	4.3	35	75	120	190	290	490	920	1530	2730	90
15 05 10 SX	3.5	5.5	25	54	90	140	220	320	570	980	2012	90


P=CONNESSIONE ARIA COMPRE	SSA R=SCARICO	U=CONNESSIONE VU	ОТО		
Art.			15 07 10 SX		
Quantità di aria aspirata	m³/h	18	19	20	
Massimo grado di vuoto	-KPa	40	60	90	
Pressione finale	mbar ass.	600	400	100	
Pressione di alimentazione	bar	2	3	3.5	
Pressione di alimentazione ottimale	bar			3.5	
Consumo di aria	NI/s	6.0	7.7	8.5	
Temperatura di lavoro	°C			-20 / +80	
Livello di rumorosità alla pressione di alimentazione ottimale	dB(A)			66	
Peso	g			355	
Ricambi			15 07 10 SX		
Silenziatore	art.		SSX 1/2"		

N.B. Tutti i valori di vuoto indicati in tabella sono validi alla normale pressione atmosferica di 1013 mbar ed ottenuti con una pressione di alimentazione costante.

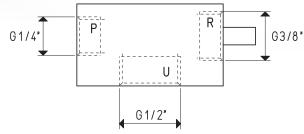
L'alimentazione dei generatori di vuoto, deve essere effettuata con aria compressa non lubrificata, filtrazione 5 micron, secondo norma ISO 8573-1 classe 4.

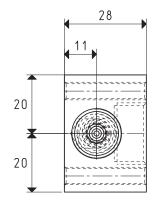


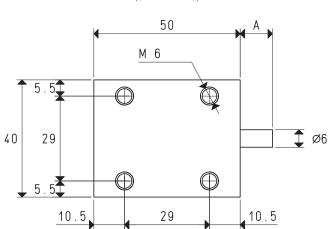
Portata d'aria (NI/s) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale

Generatore.	Press. alim.	Consumo aria		Poi			ai diversi li aliment		/uoto (-K ttimale	Pa)		Vuoto max
art.	bar	NI/s	0	10	20	30	40	50	60	70	80	-KPa
15 07 10 SX	3.5	8.5	5.55	5.00	4.44	4.16	3.83	3.00	1.97	1.56	0.85	90

Tempi di evacuazione (ms/l=s/m³) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale

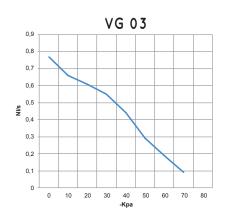

Generatore. Press. alim. Consumo aria art. bar NI/s	Tei	Tempi di evacuazione (ms/l = s/m³) ai diversi gradi di vuoto (-KPa) alla pressione di alimentazione ottimale										
art.	bar	INI/S	10	20	30	40	50	60	70	80	85	-KPa
15 07 10 SX	3.5	8.5	18	37	62	92	140	210	410	770	1220	90

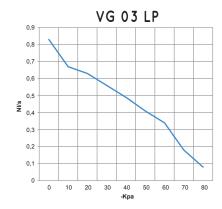

GENERATORI DI VUOTO MONOSTADIO VG 03, VG 03 LP e VG 05 LP

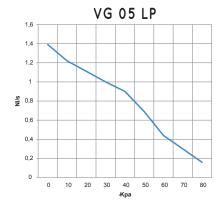


Questa serie di generatori di vuoto monostadio, anch'essi basati sul principio Venturi, possono essere forniti per pressioni di alimentazione ottimali di 4 o 6 bar. La loro conformazione consente di installarli direttamente sull'apparecchio utilizzatore e di impiegarli alla pressione d'alimentazione più idonea, in funzione del grado di vuoto desiderato. Hanno portate diverse e sono impiegabili in tutti quei sistemi di presa con ventose, per la presa e la movimentazione di oggetti poco porosi e su apparecchiature con richiesta di portata limitata. Sono fornibili, su richiesta, con silenziatore SSX 3/8" R ad alto abbattimento sonoro, installato sullo scarico dell'aria R. Sono interamente realizzati in alluminio anodizzato, con eiettori in ottone o alluminio, a seconda degli articoli.

P=CONNESSIONE ARIA COMPRE	SSA R=S	CARICO	U=CC	ONNESSIONI	VUOTO					-
Art.			VG 03		,	VG 03 LF			VG 05 L	Р
Quantità di aria aspirata	m³/h	2.7	2.8	2.9	2.6	2.8	3.0	4.8	4.9	5.0
Massimo grado di vuoto	-KPa	55	70	85	43	61	85	40	61	85
Pressione finale	mbar ass.	450	300	150	570	390	150	600	390	150
Pressione di alimentazione	bar	4	5	6	2	3	4	2	3	4
Pressione di alimentazione ottimale	bar			6			4			4
Consumo di aria	NI/s	0.7	8.0	0.9	0.7	0.9	1.2	1.3	1.7	2.2
Temperatura di lavoro	°C		-	-10 / +80		-	10 / +80			-10 / +80
Livello di rumorosità alla pressione di alimentazione ottimale	dB(A)			63			62			71
Peso	g			134			124			124
A	mm			6			9			11

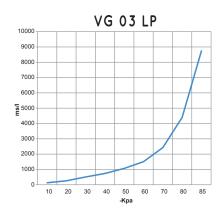

N.B. Tutti i valori di vuoto indicati in tabella sono validi alla normale pressione atmosferica di 1013 mbar ed ottenuti con una pressione di alimentazione costante.


L'alimentazione dei generatori di vuoto, deve essere effettuata con aria compressa non lubrificata, filtrazione 5 micron, secondo norma ISO 8573-1 classe 4.



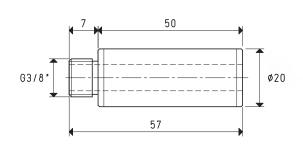
GENERATORI DI VUOTO MONOSTADIO VG 03, VG 03 LP e VG 05 LP

Portata d'aria (NI/s) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale



Generatore.	Press. alim.	Consumo aria		Poi			ai diversi Ii aliment			Pa)		Vuoto max
art.	bar	INI/S	0	10	20	30	40	50	60	70	80	-KPa
VG 03	6.0	0.9	0.80	0.66	0.61	0.55	0.44	0.29	0.19	0.09		85
VG 03 LP	4.0	1.2	0.83	0.67	0.63	0.56	0.49	0.41	0.34	0.18	0.08	85
VG 05 LP	4.0	2.2	1.39	1.22	1.11	1.00	0.90	0.69	0.44	0.30	0.16	85

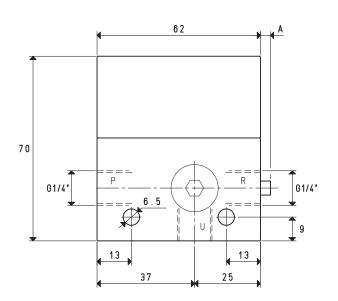
Tempi di evacuazione (ms/l=s/m³) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale



Generatore.	Press. alim.	Consumo aria	alla pressione di alimentazione ottimale									
art.	bar	NI/s	10	20	30	40	50	60	70	80	85	-KPa
VG 03	6.0	0.9	139	278	472	727	1171	1628	2720	4928		85
VG 03 LP	4.0	1.2	130	260	510	740	1070	1510	2430	4400	8740	85
VG 05 LP	4.0	2.2	70	160	260	410	620	910	1500	2620	4490	85

ACCESSORI A RICHIESTA

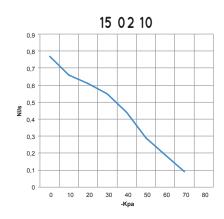
Silenziatore art. SSX 3/8" R

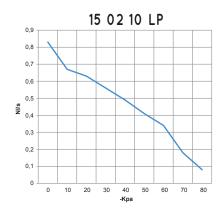

GENERATORI DI VUOTO MONOSTADIO CON ESPULSORE 15 02 10, 15 02 10 LP, 15 02 15 LP e 15 04 10

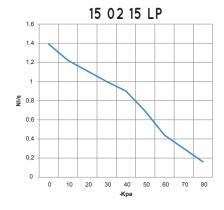
Il funzionamento di questi generatori di vuoto monostadio, è basato sul principio Venturi. Alimentando il generatore con aria compressa in P, alla connessione U si genera una depressione e in R viene scaricata l'aria di alimentazione con quella aspirata; contemporaneamente, durante il ciclo di lavoro viene alimentata una camera ricavata nel corpo del generatore che, al cessare dell'alimentazione in P, scarica l'aria compressa in essa accumulata, attraverso la connessione U, ripristinando rapidamente la pressione atmosferica all'utilizzo.

Se all'utilizzo U, per esempio, è collegata una ventosa, con questo espulsore pneumatico si staccherà molto più rapidamente rispetto ai generatori di vuoto precedentemente descritti. La pressione d'alimentazione ottimale dell'aria è normalmente di 6 bar, ma per i generatori con indicate le lettere LP nel loro articolo, è sufficiente una pressione inferiore a 4 bar per ottenere le migliori prestazioni. Sono interamente realizzati in alluminio anodizzato, con eiettori in ottone o alluminio, a seconda degli articoli.

P=CONNESSIONE ARIA COMPRE	SSA R=SC	CARICO	U=CC	ONNESSIONE	VUOTO					
Art.			15 02 10	0	15	5 02 10 I	_P	1	5 02 15	LP
Quantità di aria aspirata	m³/h	2.7	2.8	2.9	2.6	2.8	3.0	4.8	4.9	5.0
Massimo grado di vuoto	-KPa	55	70	85	43	61	85	40	61	85
Pressione finale	mbar ass.	450	300	150	570	390	150	600	390	150
Pressione di alimentazione	bar	4	5	6	2	3	4	2	3	4
Pressione di alimentazione ottimale	bar			6			4			4
Consumo di aria	NI/s	0.7	0.8	0.9	0.7	0.9	1.2	1.3	1.7	2.2
Temperatura di lavoro	°C		-	20 / +80		-	20 / +80		-	20 / +80
Livello di rumorosità alla pressione di alimentazione ottimale	dB(A)			63			63			65
Peso	g			319			320			320
A	mm						3			5
Ricambi		15 02 10		0	15 02 10 LP		_P	15 02 1		LP
Kit di guarnizioni	art.	00 15 500			00 15 500			00 15 500		0

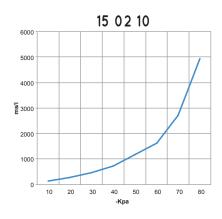

N.B. Tutti i valori di vuoto indicati in tabella sono validi alla normale pressione atmosferica di 1013 mbar ed ottenuti con una pressione di alimentazione costante.

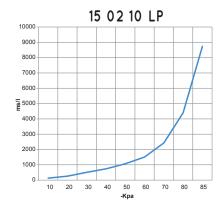

L'alimentazione dei generatori di vuoto, deve essere effettuata con aria compressa non lubrificata, filtrazione 5 micron, secondo norma ISO 8573-1 classe 4.

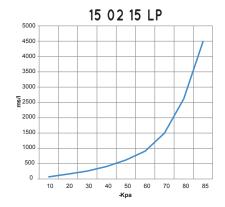


GENERATORI DI VUOTO MONOSTADIO CON ESPULSORE 15 02 10, 15 02 10 LP e 15 02 15 LP

Portata d'aria (NI/s) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale

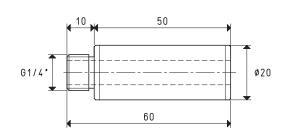






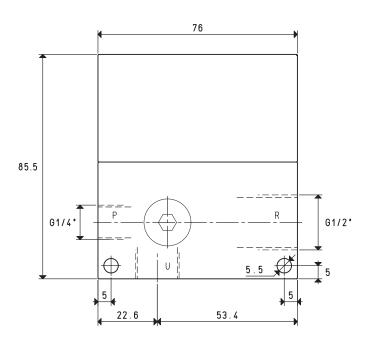
Generatore.	Press. alim.	Consumo aria		Por		a (NI/s) a essione d				(Pa)		Vuoto max
art.	bar	NI/s	0	10	20	30	40	50	60	70	80	-KPa
15 02 10	6.0	0.9	0.80	0.66	0.61	0.55	0.44	0.29	0.19	0.09		85
15 02 10 LP	4.0	1.2	0.83	0.67	0.63	0.56	0.49	0.41	0.34	0.18	0.08	85
15 02 15 LP	4.0	2.2	1.39	1.22	1.11	1.00	0.90	0.69	0.44	0.30	0.16	85

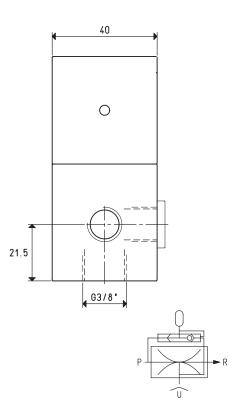
Tempi di evacuazione (ms/l=s/m³) ai diversi gradi di vuolo (-KPa), alla pressione di alimentazione ottimale

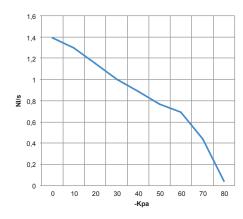


Generatore.	Press. alim.	Consumo aria	Te	mpi di ev			= s/m³) a di alimen				KPa)	Vuoto max
art.	bar	NI/s	10	20	30	40	50	60	70	80	85	-KPa
15 02 10	6.0	0.9	139	278	472	727	1171	1628	2720	4928		85
15 02 10 LP	4.0	1.2	130	260	510	740	1070	1510	2430	4400	8740	85
15 02 15 LP	4.0	2.2	70	160	260	410	620	910	1500	2620	4490	85

ACCESSORI A RICHIESTA

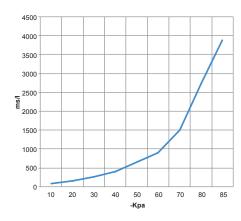

Silenziatore art. SSX 1/4"




P=CONNESSIONE ARIA COMPRE	SSA R=SCARICO	U=CONNESSIONE VI	JOTO		
Art.			15 04 10		
Quantità di aria aspirata	m³/h	4.8	5	5	
Massimo grado di vuoto	-KPa	62	78	85	
Pressione finale	mbar ass.	380	220	150	
Pressione di alimentazione	bar	4	5	6	
Pressione di alimentazione ottimale	bar			6	
Consumo di aria	NI/s	1.1	1.3	1.6	
Temperatura di lavoro	°C			-20 / +80	
Livello di rumorosità alla pressione di alimentazione ottimale	dB(A)			79	
Peso	g			501	
Ricambi			15 04 10		
Kit di guarnizioni	art.		00 15 501		

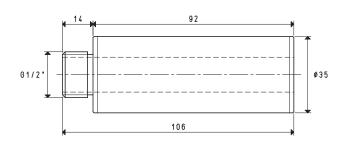
N.B. Tutti i valori di vuoto indicati in tabella sono validi alla normale pressione atmosferica di 1013 mbar ed ottenuti con una pressione di alimentazione costante.

L'alimentazione dei generatori di vuoto, deve essere effettuata con aria compressa non lubrificata, filtrazione 5 micron, secondo norma ISO 8573-1 classe 4.


GENERATORE DI VUOTO MONOSTADIO CON ESPULSORE 15 04 10

Portata d'aria (NI/s) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale

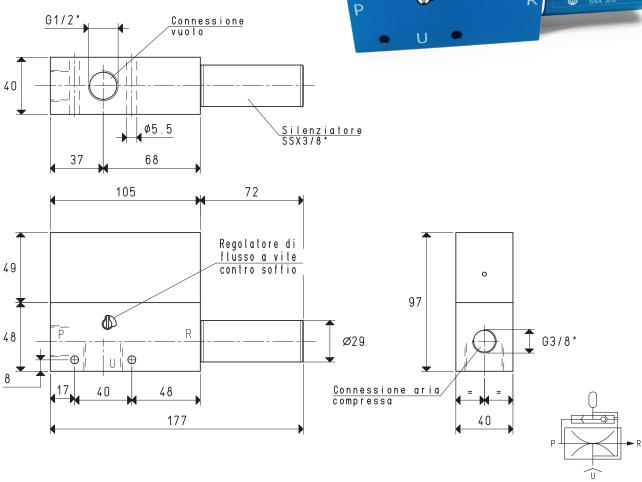
Generatore.	Press. alim.	Consumo aria		Por				gradi di tazione o		(Pa)		Vuoto max
art.	bar	NI/s	0	10	20	30	40	50	60	70	80	-KPa
15 04 10	6.0	1.6	1.39	1.30	1.15	1.00	0.89	0.77	0.69	0.44	0.04	85


Tempi di evacuazione (ms/l=s/m³) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale

Generatore.	Press. alim.	Consumo aria	Те	mpi di ev			= s/m³) ai li aliment		gradi di v ottimale	uoto (-K	Pa)	Vuoto max
art.	bar	NI/s	10	20	30	40	50	60	70	80	85	-KPa
15 04 10	6.0	1.6	77	154	261	403	649	902	1506	2730	3876	85

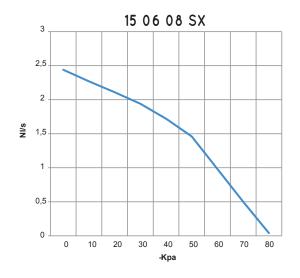
ACCESSORI A RICHIESTA

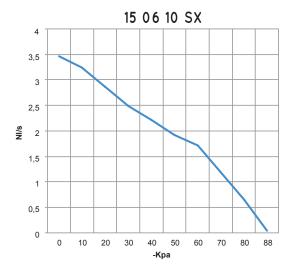
Silenziatore art. SSX 1/2"



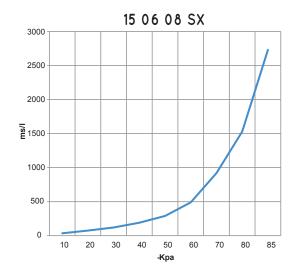
GENERATORI DI VUOTO MONOSTADIO CON ESPULSORE 15 06 08 SX e 15 06 10 SX

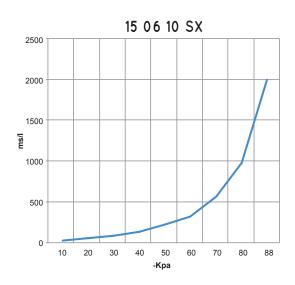
Hanno le stesse caratteristiche tecniche del 15 05 08 SX e 15 05 10 SX, con in più l'espulsore pneumatico. Per il sistema d'espulsione, viene impiegata l'aria accumulata durante il ciclo di lavoro in un'apposita camera ricavata nel corpo del generatore che, al cessare dell'alimentazione in P e opportunamente dosata tramite un regolatore di flusso a vite, viene scaricata automaticamente nella connessione dell'utilizzo U, per il rapido ripristino della pressione atmosferica. La pressione d'alimentazione ottimale è inferiore a 4 bar. Un silenziatore ad alto abbattimento sonoro, posto sullo scarico R dell'aria esausta, riduce al minimo la rumorosità ed è parte integrante del generatore. Anche questi generatori, come i precedenti descritti, sono interamente realizzati in alluminio anodizzato.


P=CONNESSIONE ARIA COMPRE	SSA R=SCAR	ICO U=0	CONNESSIO	ONE VUOTO			
Art.			15 06 08 S	(15 06 10 S	(
Quantità di aria aspirata	m³/h	8.0	8.6	8.8	12.0	12.2	12.5
Massimo grado di vuoto	-KPa	40	60	90	40	60	90
Pressione finale	mbar ass.	600	400	100	600	400	100
Pressione di alimentazione	bar	2	3	3.5	2	3	3.5
Pressione di alimentazione ottimale	bar			3.5			3.5
Consumo di aria	NI/s	2.8	3.8	4.3	3.7	5.0	5.5
Temperatura di lavoro	°C			-20 / +80			-20 / +80
Livello di rumorosità alla pressione di alimentazione ottimale	dB(A)			60			63
Peso	g			310			306
Ricambi			15 06 08 S	(15 06 10 S	(
Kit di guarnizioni	art.		00 15 414			00 15 414	
Silenziatore	art.		SSX 3/8"			SSX 3/8"	


N.B. Tutti i valori di vuoto indicati in tabella sono validi alla normale pressione atmosferica di 1013 mbar ed ottenuti con una pressione di alimentazione costante.

L'alimentazione dei generatori di vuoto, deve essere effettuata con aria compressa non lubrificata, filtrazione 5 micron, secondo norma ISO 8573-1 classe 4.


Portata d'aria (NI/s) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale

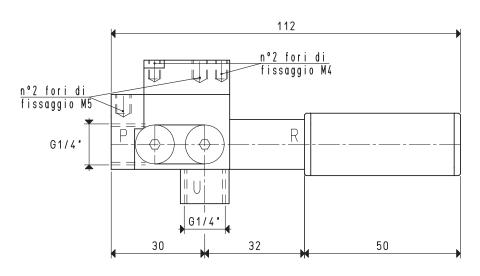


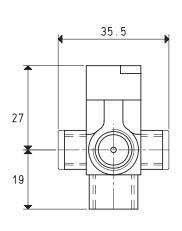
Generatore.	Press. alim.	Consumo aria		Po			ai diversi Ii aliment			Pa)		Vuoto max
art.	bar	NI/s	0	10	20	30	40	50	60	70	80	-KPa
15 06 08 SX	3.5	4.3	2.44	2.27	2.11	1.94	1.72	1.46	0.98	0.50	0.04	90
15 06 10 SX	3.5	5.5	3.47	3.24	2.86	2.49	2.22	1.92	1.72	1.20	0.65	90

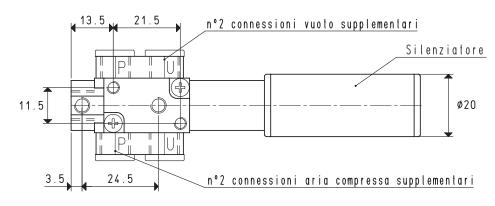
Tempi di evacuazione (ms/l=s/m³) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale

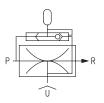
Generatore.	Press. alim.	Consumo aria	Te	mpi di ev				i diversi ç tazione o		ruoto (-K	Pa)	Vuoto max
art.	bar	NI/s	10	20	30	40	50	60	70	80	85	-KPa
15 06 08 SX	3.5	4.3	35	75	120	190	290	490	920	1530	2730	90
15 06 10 SX	3.5	5.5	25	54	90	140	220	320	570	980	2012	90

GENERATORI DI VUOTO MONOSTADIO CON ESPULSORE FVG 3 e FVG 5




Appositamente studiati per applicazioni di presa e rilascio ad altissima frequenza, questi generatori di vuoto monostadio sono basati sul principio Venturi e dotati di espulsore pneumatico per consentire la massima velocità di ripristino della pressione atmosferica all'utilizzo. Le caratteristiche più salienti sono il peso notevolmente ridotto, la pressione dell'aria di alimentazione inferiore a 4 bar, il basso consumo energetico, la semplicità d'installazione e la silenziosità durante l'impiego, grazie al silenziatore ad alto abbattimento sonoro, installato di serie sui generatori. L'espulsore pneumatico può essere disattivato, agendo semplicemente su una membrana integrata nei generatori.


Anche questi generatori, come i precedenti descritti, sono

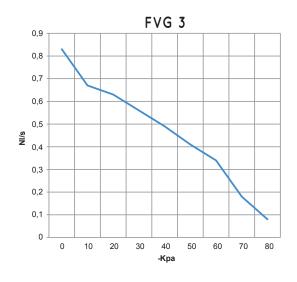

interamente realizzati in alluminio anodizzato.

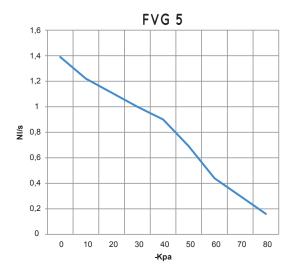
P=CONNESSIONE ARIA COMPRE	SSA R=SCAR	ICO U=0	CONNESSIO	ONE VUOTO			
Art.			FVG 3			FVG 5	
Quantità di aria aspirata	m³/h	2.6	2.8	3.0	4.8	4.9	5.0
Massimo grado di vuoto	-KPa	43	61	85	40	61	85
Pressione finale	mbar ass.	570	390	150	600	390	150
Pressione di alimentazione	bar	2	3	4	2	3	4
Pressione di alimentazione ottimale	bar			4			4
Consumo di aria	NI/s	0.7	0.9	1.2	1.3	1.7	2.2
Temperatura di lavoro	°C			-20 / +80			-20 / +80
Livello di rumorosità alla pressione di alimentazione ottimale	dB(A)			68			74
Peso	g			84			86
Ricambi			FVG 3			FVG 5	
Silenziatore	art.		SSX 1/4"			SSX 1/4"	

00 15 502

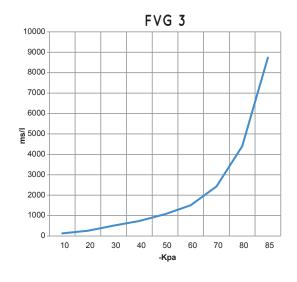
N.B. Tutti i valori di vuoto indicati in tabella sono validi alla normale pressione atmosferica di 1013 mbar ed ottenuti con una pressione di alimentazione costante.

L'alimentazione dei generatori di vuoto, deve essere effettuata con aria compressa non lubrificata, filtrazione 5 micron, secondo norma ISO 8573-1 classe 4.


art.


Kit di guarnizioni e valvole a lamella

00 15 502


Portata d'aria (NI/s) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale



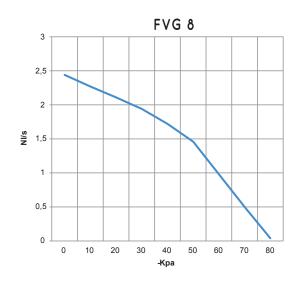
Generatore.	Press. alim.	Consumo aria		Poi	rtata d'ar alla pr	ia (NI/s) a essione d	ai diversi li aliment	gradi di v azione o	vuoto (-K ttimale	Pa)		Vuoto max
art.	bar	NI/s	0	10	20	30	40	50	60	70	80	-KPa
FVG 3	4.0	1.2	0.83	0.67	0.63	0.56	0.49	0.41	0.34	0.18	0.08	85
FVG 5	4.0	2.2	1.39	1.22	1.11	1.00	0.90	0.69	0.44	0.30	0.16	85

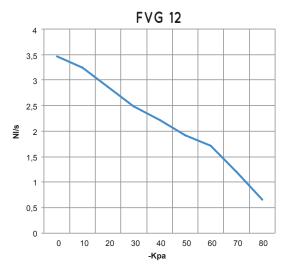
Tempi di evacuazione (ms/l=s/m³) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale

Generatore.	Press. alim.	Consumo aria	Tei	mpi di ev			s/m³) ai li aliment			uoto (-K	Pa)	Vuoto max
art.	bar	NI/s	10	20	30	40	50	60	70	80	85	-KPa
FVG 3	4.0	1.2	130	260	510	740	1070	1510	2430	4400	8740	85
FVG 5	4.0	2.2	70	160	260	410	620	910	1500	2620	4490	85

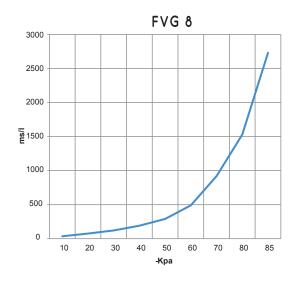
GENERATORI DI VUOTO MONOSTADIO CON ESPULSORE FVG 8 e FVG 12

Appositamente studiati per applicazioni di presa e rilascio ad altissima frequenza, questi generatori di vuoto monostadio sono basati sul principio Venturi e dotati di espulsore pneumatico, implementabile su richiesta attraverso la connessione M7 posta sul coperchio, per consentire la massima velocità di ripristino della pressione atmosferica all'utilizzo. Le caratteristiche più salienti sono il peso notevolmente ridotto, la pressione dell'aria compressa di alimentazione inferiore a 4 bar, il basso consumo energetico, la semplicità d'installazione e la silenziosità durante l'impiego, grazie al silenziatore ad alto abbattimento sonoro, installato di serie sui generatori. L'espulsore pneumatico può essere disattivato, agendo semplicemente su una membrana integrata nei generatori. Anche questi generatori, come i precedenti descritti, sono interamente realizzati in alluminio anodizzato.


P=CONNESSIONE ARIA COMPRE	SSA R=SCAR	ICO U=0	CONNESSIC	NE VUOTO			
Art.			FVG 8			FVG 12	
Quantità di aria aspirata	m³/h	8.0	8.6	8.8	12.0	12.2	12.5
Massimo grado di vuoto	-KPa	40	60	90	40	60	90
Pressione finale	mbar ass.	600	400	100	600	400	100
Pressione di alimentazione	bar	2	3	3.5	2	3	3.5
Pressione di alimentazione ottimale	bar			3.5			3.5
Consumo di aria	NI/s	2.8	3.8	4.3	3.7	5	5.5
Temperatura di lavoro	°C			-20 / +80			-20 / +80
Livello di rumorosità alla pressione di alimentazione ottimale	dB(A)			60			63
Peso	g			250			252
Ricambi			FVG 8			FVG 12	
Silenziatore	art.		SSX 3/8"			SSX 3/8"	
Kit di guarnizioni e valvole a lamella	art.		00 15 538			00 15 538	


N.B. Tutti i valori di vuoto indicati in tabella sono validi alla normale pressione atmosferica di 1013 mbar ed ottenuti con una pressione di alimentazione costante.

L'alimentazione dei generatori di vuoto, deve essere effettuata con aria compressa non lubrificata, filtrazione 5 micron, secondo norma ISO 8573-1 classe 4.


Portata d'aria (NI/s) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale



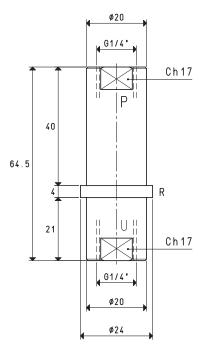
Generatore.	Press. alim.	Consumo aria		Poi	rtata d'ar alla pr	ia (NI/s) a essione d	ai diversi li aliment	gradi di v azione o	vuoto (-K ttimale	Pa)		Vuoto max
art.	bar	NI/s	0	10	20	30	40	50	60	70	80	-KPa
FVG 8	3.5	4.3	2.44	2.27	2.11	1.94	1.72	1.46	0.98	0.50	0.04	90
FVG 12	3.5	5.5	3.47	3.24	2.86	2.49	2.22	1.92	1.72	1.20	0.65	90

Tempi di evacuazione (ms/l=s/m³) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale

Generatore.	Press. alim.	Consumo aria	Te	mpi di ev				i diversi ç tazione o		ruoto (-K	Pa)	Vuoto max
art.	bar	NI/s	10	20	30	40	50	60	70	80	85	-KPa
FVG 8	3.5	4.3	35	75	120	190	290	490	920	1530	2730	90
FVG 12	3.5	5.5	25	54	90	140	220	320	570	980	2012	90

GENERATORE DI VUOTO MONOSTADIO IN LINEA PVP 1

Anche i generatori di vuoto di questa nuova serie, funzionano sfruttando il principio Venturi.


La caratteristica che li distingue dai generatori di vuoto classici, sono le due connessioni per l'aria di alimentazione e il vuoto, poste sul medesimo asse, mentre la connessione di scarico dell'aria aspirata con quella esausta, è ortogonale ad esse ed è ricavata sulla circonferenza del generatore.

Questi generatori di vuoto sono facilmente smontabili, il che consente l'accesso e la visibilità di tutti i componenti. I vantaggi derivanti da questa conformazione sono i minori ingombri, la semplicità di manutenzione e la facilità di assemblaggio ai supporti delle ventose o sui portaventose.

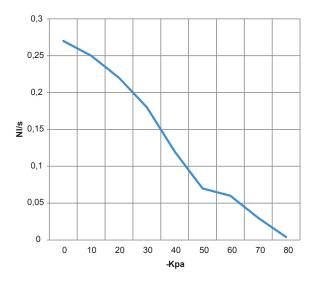
Di serie, sono dotati di filtro d'aspirazione in filo d'acciaio inox pressato e di uno speciale silenziatore in microfibre, avvolto sulla connessione di scarico, che li rende particolarmente silenziosi.

Sono interamente realizzati in alluminio anodizzato.

P=CONNESSIONE ARIA COMPRE	SSA R=SCARICO	U=CONNESSIONE VUOTO)	
Art.			PVP 1	
Quantità di aria aspirata	m³/h	0.9	1.0	1.0
Massimo grado di vuoto	-KPa	60	80	85
Pressione finale	mbar ass.	400	200	150
Pressione di alimentazione	bar	3	4	5
Pressione di alimentazione ottimale	bar			5
Consumo di aria	NI/s	0.30	0.35	0.45
Temperatura di lavoro	°C			-20 / +80
Livello di rumorosità alla pressione di alimentazione ottimale	dB(A)			62
Peso	g			44
Ricambi			PVP 1	
Silenziatore	art.		00 15 114	

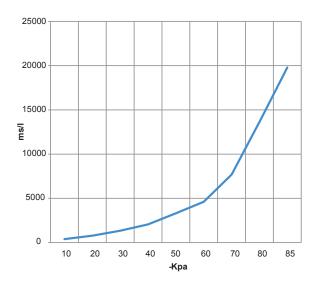
N.B. Tutti i valori di vuoto indicati in tabella sono validi alla normale pressione atmosferica di 1013 mbar ed ottenuti con una pressione di alimentazione costante.

L'alimentazione dei generatori di vuoto, deve essere effettuata con aria compressa non lubrificata, filtrazione 5 micron, secondo norma ISO 8573-1 classe 4.


art.

Filtro aspirazione

SP 1/4 I

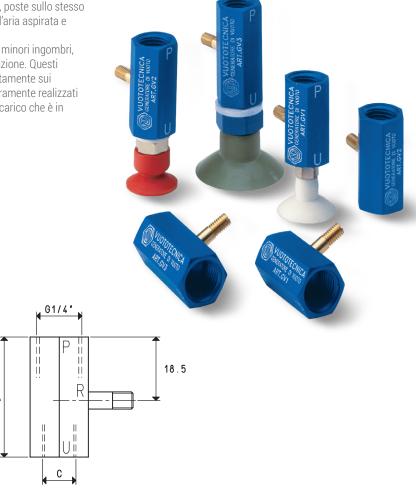


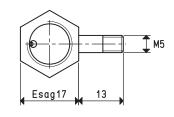
Portata d'aria (NI/s) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale

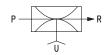
Generatore.	Press. alim.	Consumo aria		Por				gradi di tazione o		(Pa)		Vuoto max
art.	bar	NI/s	0	10	20	30	40	50	60	70	80	-KPa
PVP 1	5.0	0.45	0.27	0.25	0.22	0.18	0.12	0.07	0.06	0.03		85

Tempi di evacuazione (ms/l=s/m³) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale

Generatore.	Press. alim.	Consumo aria	alla pressione di alimentazione ottimale								Vuoto max	
art.	bar	NI/s	10	20	30	40	50	60	70	80	85	-KPa
PVP 1	5.0	0.45	393	786	1336	2057	3312	4605	7690	13935	19787	85

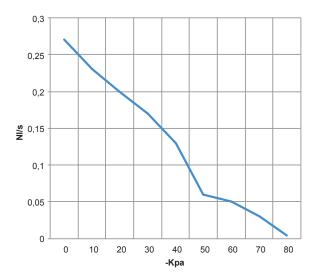

GENERATORI DI VUOTO MONOSTADIO IN LINEA GV 1, GV 2 e GV 3




Anche il funzionamento di questi generatori di vuoto è basato sul principio Venturi.

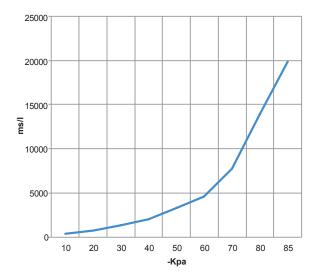
La caratteristica che li distingue dai generatori di vuoto classici sono le due connessioni per l'aria di alimentazione e il vuoto, poste sullo stesso asse, mentre la connessione relativa allo scarico dell'aria aspirata e quella esausta è posta ortogonalmente ad esse.

I vantaggi derivanti da questa conformazione sono i minori ingombri, la facilità d'assemblaggio e la semplicità di manutenzione. Questi generatori di vuoto possono essere assemblati direttamente sui supporti delle ventose o sui portaventose. Sono interamente realizzati in alluminio anodizzato, ad eccezione dell'ugello di scarico che è in ottone


P=CONNESSIONE ARIA COMPRE	SSA R=S	CARICO	U=CC	ONNESSION	E VUOTO					
Art.			GV1			GV2			GV3	
Quantità di aria aspirata	m³/h	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Massimo grado di vuoto	-KPa	60	75	85	60	75	85	60	75	85
Pressione finale	mbar ass.	400	250	150	400	250	150	400	250	150
Pressione di alimentazione	bar	3	4	5	3	4	5	3	4	5
Pressione di alimentazione ottimale	bar			5			5			5
Consumo di aria	NI/s	0.30	0.35	0.45	0.30	0.35	0.45	0.30	0.35	0.45
Temperatura di lavoro	°C			-20 / +80			-20 / +80			-20 / +80
Livello di rumorosità alla pressione di alimentazione ottimale	dB(A)			70			70			70
Peso	g			21			20			19
A				30			35			38
С	Ø			M5			G1/8"			G1/4"

N.B. Tutti i valori di vuoto indicati in tabella sono validi alla normale pressione atmosferica di 1013 mbar ed ottenuti con una pressione di alimentazione costante.

L'alimentazione dei generatori di vuoto, deve essere effettuata con aria compressa non lubrificata, filtrazione 5 micron, secondo norma ISO 8573-1 classe 4.



Portata d'aria (NI/s) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale

Generatore.	Press. alim.	Consumo aria		Por				gradi di tazione o		(Pa)		Vuoto max
art.	bar	NI/s	0	10	20	30	40	50	60	70	80	-KPa
GV1 - GV2 - GV3	5.0	0.45	0.27	0.23	0.20	0.17	0.13	0.06	0.05	0.03		85

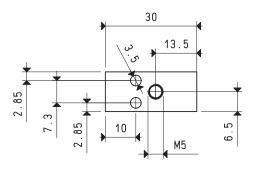
Tempi di evacuazione (ms/l=s/m³) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale

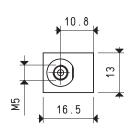
Generatore.	Press. alim.	Consumo aria	Ter	npi di ev				i diversi q tazione o		vuoto (-K	Pa)	Vuoto max
art.	bar	NI/s	10	20	30	40	50	60	70	80	85	-KPa
GV1 - GV2 - GV3	5.0	0.45	394	788	1339	2063	3322	4617	7711	13973	19841	85

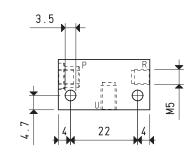
GENERATORI DI VUOTO MONOSTADIO PVP 05, PVP 2 e PVP 3

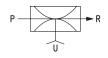
Di dimensioni particolarmente contenute in rapporto alle loro prestazioni, anche questi generatori di vuoto monostadio funzionano sfruttando il principio Venturi.

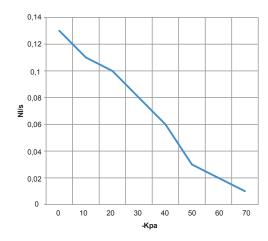
Alimentando il generatore con aria compressa in P, alla connessione U si genera una depressione e in R viene scaricata l'aria di alimentazione con quella aspirata. Interrompendo l'alimentazione dell'aria in P, cessa l'effetto vuoto in U.


I generatori di vuoto qui illustrati e descritti vengono generalmente impiegati per l'asservimento di ventose, per la presa e la movimentazione di oggetti non porosi e di apparecchiature in cui la richiesta della portata è molto limitata.


Sono realizzati in alluminio anodizzato, con gli eiettori in alluminio (PVP05) o in ottone (PVP2 - PVP3).

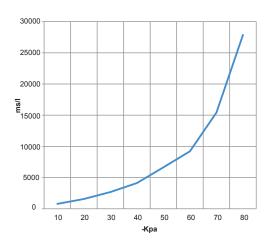

Su richiesta possono essere forniti con silenziatore ad alto abbattimento sonoro, installato sulla connessione di scarico R.





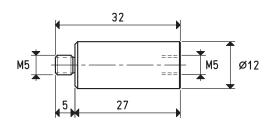
P=CONNESSIONE ARIA COMPRE	SSA R=S	CARICO	U=CONNESSION	E VUOTO			
Art.				PVI	P 05		
Quantità di aria aspirata	m³/h	0.36	0.42	0.42	0.47	0.50	0.50
Massimo grado di vuoto	-KPa	22	33	42	48	61	82
Pressione finale	mbar ass.	780	670	580	520	390	180
Pressione di alimentazione	bar	1	2	3	4	5	6
Pressione di alimentazione ottimale	bar						6
Consumo di aria	NI/s	0.13	0.20	0.27	0.34	0.40	0.50
Temperatura di lavoro	°C						-20 / +80
Livello di rumorosità alla pressione di alimentazione ottimale	dB(A)						70
Peso	g						14

N.B. Tutti i valori di vuoto indicati in tabella sono validi alla normale pressione atmosferica di 1013 mbar ed ottenuti con una pressione di alimentazione costante. L'alimentazione dei generatori di vuoto, deve essere effettuata con aria compressa non lubrificata, filtrazione 5 micron, secondo norma ISO 8573-1 classe 4.


GENERATORE DI VUOTO MONOSTADIO PVP 05

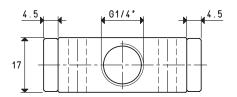
Portata d'aria (NI/s) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale

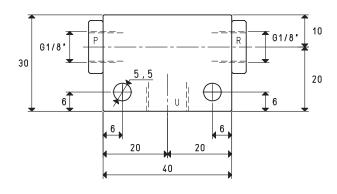
Generatore.	Press. alim.	Consumo aria		Por	tata d'ari alla pre			gradi di tazione o		(Pa)		Vuoto max
art.	bar	NI/s	0	10	20	30	40	50	60	70	80	-KPa
PVP 05	6.0	0.5	0.13	0.11	0.10	0.08	0.06	0.03	0.02	0.01		82

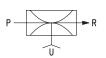

Tempi di evacuazione (ms/l=s/m³) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale

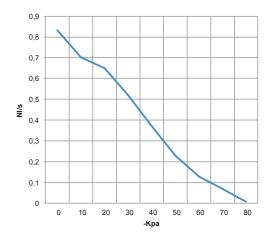
Generatore.	Press. alim.	Consumo aria	Ten	npi di evac	uazione (alla press					KPa)	Vuoto max
art.	bar	NI/s	10	20	30	40	50	60	70	80	-KPa
PVP 05	6.0	0.5	786	1572	2678	4126	6644	9210	15420	27870	82

ACCESSORI A RICHIESTA


Filtro silenziatore art. FB 1

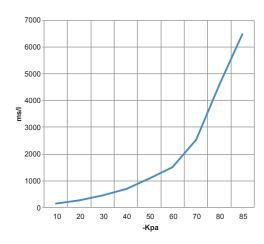





P=CONNESSIONE ARIA COMPRES	SSA R=SC/	ARICO	U=CONNESSIONE VUOTO		
Art.				PVP 2	
Quantità di aria aspirata	m³/h		2.8	2.9	3.0
Massimo grado di vuoto	-KPa		60	70	85
Pressione finale	mbar ass.		400	300	150
Pressione di alimentazione	bar		4	5	6
Pressione di alimentazione ottimale	bar				6
Consumo di aria	NI/s		0.7	0.8	0.9
Temperatura di lavoro	°C				-20 / +80
Livello di rumorosità alla pressione di alimentazione ottimale	dB(A)				78
Peso	g				70

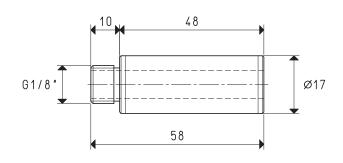
N.B. Tutti i valori di vuoto indicati in tabella sono validi alla normale pressione atmosferica di 1013 mbar ed ottenuti con una pressione di alimentazione costante.

L'alimentazione dei generatori di vuoto, deve essere effettuata con aria compressa non lubrificata, filtrazione 5 micron, secondo norma ISO 8573-1 classe 4.


GENERATORE DI VUOTO MONOSTADIO PVP 2

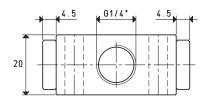
Portata d'aria (NI/s) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale

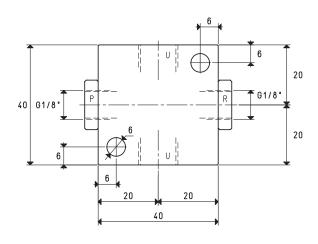
Generatore.	Press. alim.	Consumo aria		Por				gradi di tazione o		(Pa)		Vuoto max
art.	bar	NI/s	0	10	20	30	40	50	60	70	80	-KPa
PVP 2	6.0	0.9	0.83	0.70	0.65	0.52	0.37	0.23	0.13	0.07		85

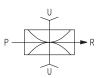

Tempi di evacuazione (ms/l=s/m³) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale

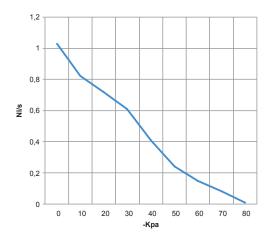
Generatore.	Press. alim.	Consumo aria	Tempi di evacuazione (ms/l = s/m³) ai diversi gradi di vuoto (-KPa) alla pressione di alimentazione ottimale							Vuoto max		
art.	bar	NI/s	10	20	30	40	50	60	70	80	85	-KPa
PVP 2	6.0	0.9	128	257	438	675	1087	1511	2523	4572	6492	85

ACCESSORI A RICHIESTA


Silenziatore art. SSX 1/8"

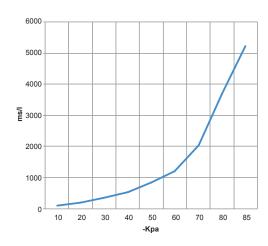





P=CONNESSIONE ARIA COMPRE	SSA R=SCARICO	U=CONNESSIONE VU	IOTO		
Art.			PVP 3		
Quantità di aria aspirata	m³/h	3.4	3.5	3.7	
Massimo grado di vuoto	-KPa	60	70	85	
Pressione finale	mbar ass.	400	300	150	
Pressione di alimentazione	bar	4	5	6	
Pressione di alimentazione ottimale	bar			6	
Consumo di aria	NI/s	1.0	1.1	1.3	
Temperatura di lavoro	°C			-20 / +80	
Livello di rumorosità alla pressione di alimentazione ottimale	dB(A)			80	
Peso	g			100	

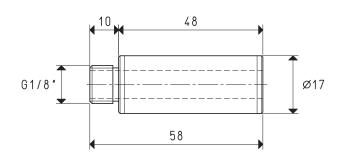
N.B. Tutti i valori di vuoto indicati in tabella sono validi alla normale pressione atmosferica di 1013 mbar ed ottenuti con una pressione di alimentazione costante.

L'alimentazione dei generatori di vuoto, deve essere effettuata con aria compressa non lubrificata, filtrazione 5 micron, secondo norma ISO 8573-1 classe 4.


GENERATORE DI VUOTO MONOSTADIO PVP 3

Portata d'aria (NI/s) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale

Generatore.	Press. alim. bar	Consumo aria NI/s	Portata d'aria (NI/s) ai diversi gradi di vuoto (-KPa) alla pressione di alimentazione ottimale								Vuoto max	
art.			0	10	20	30	40	50	60	70	80	-KPa
PVP 3	6.0	1.3	1.03	0.82	0.72	0.61	0.41	0.24	0.15	0.08		85

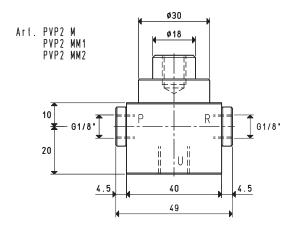

Tempi di evacuazione (ms/l=s/m³) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale

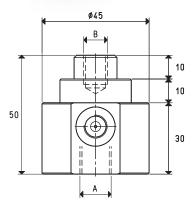
Generatore.	Press. alim.	ress. alim. Consumo aria bar NI/s	Tempi di evacuazione (ms/l = s/m³) ai diversi gradi di vuoto (-KPa) alla pressione di alimentazione ottimale									Vuoto max
art.	Dai		10	20	30	40	50	60	70	80	85	-KPa
PVP 3	6.0	1.3	104	207	353	544	857	1217	2033	3684	5232	85

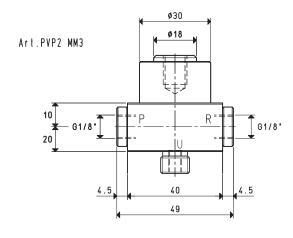
ACCESSORI A RICHIESTA

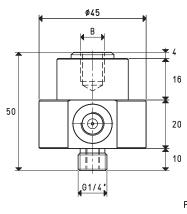
Silenziatore art. SSX 1/8"

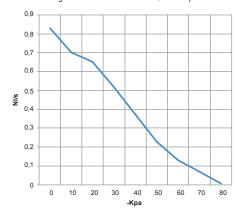
GENERATORI DI VUOTO MONOSTADIO PVP 2 M, PVP 2 MM1, PVP 2 MM2 e PVP 2 MM3


I generatori di vuoto di questa pagina sono basati sul medesimo principio Venturi di quelli precedentemente descritti e forniscono le stesse prestazioni tecniche; si distinguono per la loro diversa conformazione.


La connessione del vuoto U, infatti, è filettata per consentire l'assemblaggio di una ventosa con supporto maschio o femmina, mentre sul medesimo asse, ma dalla parte opposta, un foro con filettatura metrica, consente di installare il generatore direttamente sull'automatismo o sui portaventose dotati di molleggio.

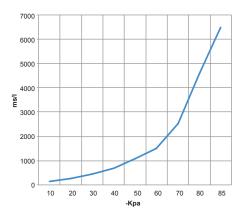

Sono interamente realizzati in alluminio anodizzato, con gli eiettori in ottore.


Muniti di ventosa, sono vere e proprie unità di presa autonome; sono adatti per caricatori o movimentatori a ventose, per la presa di lamiere, lastre di vetro, pannelli di plastica o prodotti similari.
Su richiesta, possono essere forniti con silenziatore ad alto abbattimento sonoro, installato sulla connessione di scarico R.

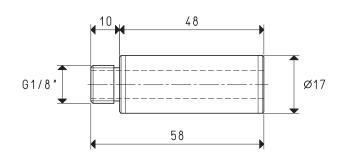

P			→ F
F —			
	,	,	

P=CONNESSIONE ARIA COMPRE	SSA R=S	CARICO	Į	J=CONNE	ESSIONE	VUO	ТО						
Art.		F	PVP 2 I	М	PV	/P 2 M	M1	P۱	/P 2 M	M2	PV	'P 2 M	М3
Quantità di aria aspirata	m³/h	2.8	2.9	3.0	2.9	2.9	3.0	2.8	2.9	3.0	2.8	2.9	3.0
Massimo grado di vuoto	-KPa	60	70	85	60	70	85	60	70	85	60	70	85
Pressione finale	mbar ass.	400	300	150	400	300	150	400	300	150	400	300	150
Pressione di alimentazione	bar	4	5	6	4	5	6	4	5	6	4	5	6
Pressione di alimentazione ottimale	bar			6			6			6			6
Consumo di aria	NI/s	0.7	0.8	0.9	0.7	8.0	0.9	0.7	8.0	0.9	0.7	8.0	0.9
Temperatura di lavoro	°C		-2	20 / +80		-2	08+ \ 0		-2	08+\0		-2	20 / +80
Livello di rumorosità alla pressione di alimentazione ottimale	dB(A)			78			78			78			78
A				G3/8"			G3/8"			G1/4"			-
В				M10			M12			M10			M10
Peso	g			162			162			162			172

N.B. Tutti i valori di vuoto indicati in tabella sono validi alla normale pressione atmosferica di 1013 mbar ed ottenuti con una pressione di alimentazione costante.


L'alimentazione dei generatori di vuoto, deve essere effettuata con aria compressa non lubrificata, filtrazione 5 micron, secondo norma ISO 8573-1 classe 4.

Generatore.	Press. alim.	Consumo aria	Portata d'aria (NI/s) ai diversi gradi di vuoto (-KPa) alla pressione di alimentazione ottimale							Vuoto max		
art.	bar	NI/s	0	10	20	30	40	50	60	70	80	-KPa
PVP 2 M	6.0	0,9	0.83	0.70	0.65	0.52	0.37	0.23	0.13	0.07		85
PVP 2 MM1	6.0	0,9	0.83	0.70	0.65	0.52	0.37	0.23	0.13	0.07		85
PVP 2 MM2	6.0	0,9	0.83	0.70	0.65	0.52	0.37	0.23	0.13	0.07		85
PVP 2 MM3	6.0	0,9	0.83	0.70	0.65	0.52	0.37	0.23	0.13	0.07		85

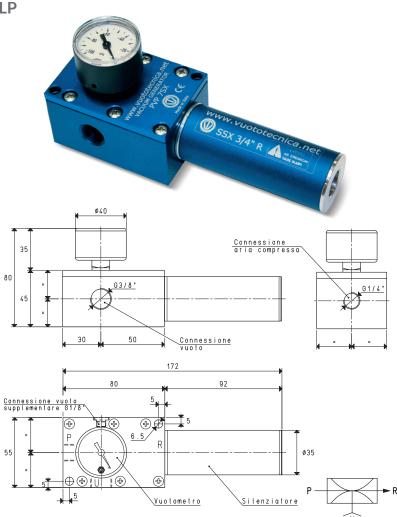

Tempi di evacuazione (ms/l=s/m³) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale

Generatore.	Press. alim.	Consumo aria	Tempi di evacuazione (ms/l = s/m³) ai diversi gradi di vuoto (-KPa) alla pressione di alimentazione ottimale							Vuoto max		
art.	bar	NI/s	10	20	30	40	50	60	70	80	85	-KPa
PVP 2 M	6.0	0,9	128	257	438	675	1087	1511	2523	4572	6492	85
PVP 2 MM1	6.0	0,9	128	257	438	675	1087	1511	2523	4572	6492	85
PVP 2 MM2 PVP 2 MM3	6.0 6.0	0,9 0,9	128 128	257 257	438 438	675 675	1087 1087	1511 1511	2523 2523	4572 4572	6492 6492	85 85

ACCESSORI A RICHIESTA

Silenziatore art. SSX 1/8"

8


GENERATORI DI VUOTO MONOSTADIO PVP 7 SX / SXLP, PVP 14 SX / SXLP e PVP 18 SX / SXLP

I generatori di vuoto PVP ... SX/SXLP, funzionano sfruttando il principio Venturi precedentemente descritto.

Uno speciale silenziatore di nuova generazione, installato su di essi, li rende molto silenziosi e, grazie alla sua conformazione, impedisce loro di intasarsi, consentendo anche l'aspirazione di fluidi saturi di condense d'acqua o di oli, miscelati a polveri fini o impalpabili.

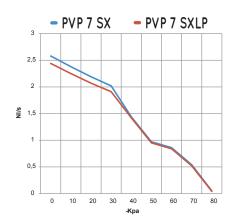
Di serie, sono dotati di un vuotometro per la lettura diretta del grado di vuoto. Una connessione supplementare, ricavata sul corpo del generatore, consente di installare un vacuostato per la segnalazione del grado di vuoto raggiunto, oppure, una elettrovalvola pneumatica, per un ripristino più rapido della pressione atmosferica all'utilizzo. Sono interamente realizzati in alluminio anodizzato, con gli eiettori e la viteria in acciaio inox.

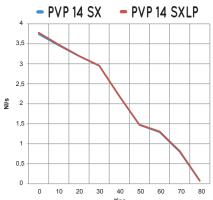
Questi generatori di vuoto possono essere impiegati per l'asservimento di una o più ventose o di apparecchiature dove la richiesta della portata sia contenuta entro i valori esposti e operare in ambienti particolarmente umidi o polverosi. Sono disponibili con portate d'aspirazione comprese tra 8,3 e 18 m³/h e pressioni d'alimentazione di 4÷6 bar, per gli articoli SX e di 1÷3 bar per gli articoli SXLP.

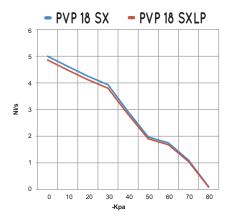
P=CONNESSIONE ARIA COMPRES	SSA R=S	CARICO	U=CO	NNESSIONE	VUOTO						
Art.	Art.			(F	VP 14 S	Х	F	PVP 18 SX		
Quantità di aria aspirata	m³/h	9.5	9.5	9.3	14.0	14.0	13.5	18.5	18.5	18.0	
Massimo grado di vuoto	-KPa	60	73	85	60	73	85	60	73	85	
Pressione finale	mbar ass.	400	270	150	400	270	150	400	270	150	
Pressione di alimentazione	bar	4	5	6	4	5	6	4	5	6	
Pressione di alimentazione ottimale	bar			6			6			6	
Consumo di aria	NI/s	2.3	2.7	3.2	3.2	4.0	4.8	4.3	5.4	6.4	
Temperatura di lavoro	°C		-2	10 / +100		-2	10 / +100		-2	20 / +100	
Livello di rumorosità alla											
pressione di alimentazione ottimale	dB(A)			63			65			67	
Peso	g			470			480			490	
		I									

Art.		PVP 7 SXLP			P\	/P 14 SX	LP	PVP 18 SXLP			
Quantità di aria aspirata	m³/h	8.3	9.6	8.8	11.7	14.0	13.6	15.0	18.3	17.5	
Massimo grado di vuoto	-KPa	28	58	88	28	58	88	28	58	88	
Pressione finale	mbar ass.	720	420	120	720	420	120	720	420	120	
Pressione di alimentazione	bar	1	2	3	1	2	3	1	2	3	
Pressione di alimentazione ottimale	bar			3			3			3	
Consumo di aria	NI/s	2.2	3.4	4.5	3.4	5.2	6.9	4.5	6.6	8.6	
Temperatura di lavoro	°C		-2	20 / +100		-2	20 / +100		-2	20 / +100	
Livello di rumorosità alla											
pressione di alimentazione ottimale	dB(A)			67			68			70	
Peso	g			470			480			490	

Ricambi		PVP 7 SX / SXLP	PVP 14 SX / SXLP	PVP 18 SX / SXLP
Kit di guarnizioni Vuotometro	art. art.	00 15 276 09 03 15	00 15 276 09 03 15	00 15 276 09 03 15
Silenziatore	art.	SSX 3/4" R	SSX 3/4" R	SSX 3/4" R

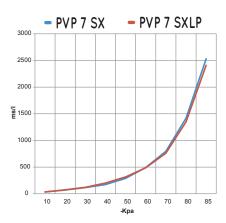

N.B. Tutti i valori di vuoto indicati in tabella sono validi alla normale pressione atmosferica di 1013 mbar ed ottenuti con una pressione di alimentazione costante.

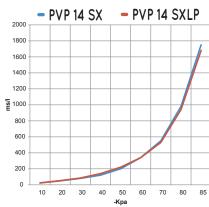

L'alimentazione dei generatori di vuoto, deve essere effettuata con aria compressa non lubrificata, filtrazione 5 micron, secondo norma ISO 8573-1 classe 4.

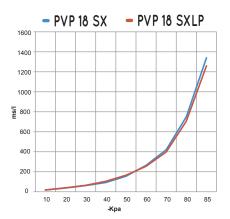


GENERATORI DI VUOTO MONOSTADIO PVP 7 SX / SXLP, PVP 14 SX / SXLP e PVP 18 SX / SXLP

Portata d'aria (NI/s) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale







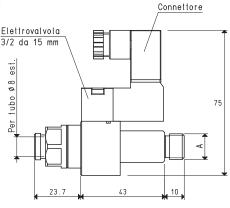
Generatore.	Press. alim.	Consumo aria	Portata d'aria (NI/s) ai diversi gradi di vuoto (-KPa) alla pressione di alimentazione ottimale								Vuoto max	
art.	bar	NI/s	0	10	20	30	40	50	60	70	80	-KPa
PVP 7 SX	6.0	3.2	2.58	2.38	2.19	2.02	1.44	0.97	0.86	0.54	0.05	85
PVP 14 SX	6.0	4.8	3.75	3.46	3.19	2.95	2.19	1.47	1.29	0.80	0.07	85
PVP 18 SX	6.0	6.4	5.00	4.62	4.25	3.93	2.92	1.97	1.75	1.10	0.10	85
PVP 7 SXLP	3.0	4.5	2.44	2.25	2.07	1.91	1.42	0.95	0.84	0.52	0.04	88
PVP 14 SXLP	3.0	6.9	3.77	3.48	3.20	2.96	2.20	1.48	1.31	0.82	0.07	88
PVP 18 SXLP	3.0	8.6	4.86	4.48	4.12	3.80	2.82	1.90	1.68	1.05	0.09	88

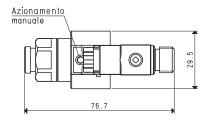
Tempi di evacuazione (ms/l=s/m³) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale

Generatore.	Press. alim.	Consumo aria	Tempi di evacuazione (ms/l = s/m³) ai diversi gradi di vuoto (-KPa) alla pressione di alimentazione ottimale							Pa)	Vuoto max	
art.	bar	NI/s	10	20	30	40	50	60	70	80	85	-KPa
PVP 7 SX	6.0	3.2	33	70	115	173	289	492	796	1418	2532	85
PVP 14 SX	6.0	4.8	23	49	80	120	200	340	550	980	1750	85
PVP 18 SX	6.0	6.4	18	38	62	93	155	264	420	750	1340	85
PVP 7 SXLP	3.0	4.5	34	74	121	200	315	487	760	1348	2410	88
PVP 14 SXLP	3.0	6.9	24	52	85	140	220	340	530	940	1680	88
PVP 18 SXLP	3.0	8.6	18	39	64	105	165	255	398	706	1260	88

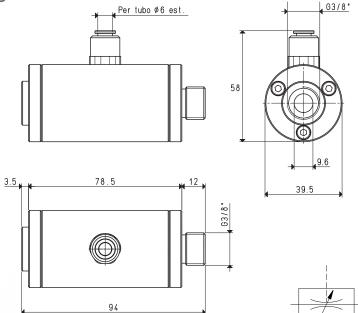
VALVOLE PNEUMATICHE AD OTTURATORE COASSIALE

La funzione di queste elettrovalvole è quella di intercettare l'aria compressa di alimentazione ai generatori di vuoto; l'intercettazione tramite un originale otturatore coassiale, consente l'apporto di grandi quantità d'aria, garantendo così una maggiore velocità di presa delle ventose.


Sono costituite da un corpo in alluminio anodizzato, con integrato un otturatore coassiale, azionato pneumaticamente da una microelettrovalvola con bobina elettrica a basso assorbimento, in grado di gestire pressioni operative comprese tra 1,5 e 7 bar.
Possono essere comandate tramite vacuostati o


Possono essere comandate tramite vacuostati o semplici interruttori elettrici.

Grazie alla loro compattezza, è possibile installarle anche direttamente sui generatori di vuoto, eliminando in tal modo inutili tubazioni e volumi negativi.

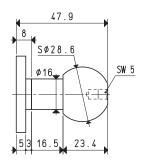

Art.	A Ø	Portata max a 6 bar	Pressione di alimentazione bar	Assorbimento elettrico	Peso g
VPE 00 NC V24CC	G1/8"	350	1.5 ÷ 7	2	110
VPE 00 NO V24CC	G1/8"	350	1.5 ÷ 7	2	110
VPE 01 NC V24CC	G1/4"	500	1.5 ÷ 7	2	100
VPE 01 NO V24CC	G1/4"	500	1.5 ÷ 7	2	100
VPE 02 NC V24CC	G3/8"	600	1.5 ÷ 7	2	100
VPE 02 NO V24CC	G3/8"	600	1.5 ÷ 7	2	100

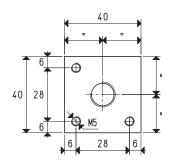
N.B. L'alimentazione dei generatori di vuoto, deve essere effettuata con aria compressa non lubrificata, filtrazione 5 micron, secondo norma ISO 8573-1 classe 4.

VALVOLA PNEUMATICA A MANICOTTO

Per garantire una maggior rapidità di ripristino della pressione atmosferica all'interno delle ventose in fase di distacco del carico preso, si è realizzata questa particolare valvola a manicotto che, azionandola pneumaticamente a fine ciclo, chiude la connessione di scarico del generatore, convogliando l'aria d'alimentazione nella connessione dell'utilizzo; in questo modo si ottiene il distacco immediato delle ventose. E' adatta per generatori con portate non superiori ai 15 m³/h e studiata in particolar modo per la serie MSVE.

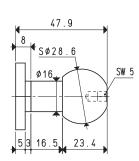
Art.	Portata max orifizio libero	Pressione al servocomando bar	Peso g
07 02 90	600	3 ÷ 8	230

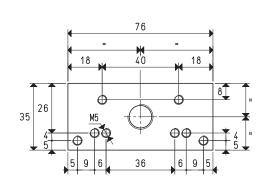

N.B. L'alimentazione dei generatori di vuoto, deve essere effettuata con aria compressa non lubrificata, filtrazione 5 micron, secondo norma ISO 8573-1 classe 4.


SUPPORTI DI FISSAGGIO PER GENERATORI DI VUOTO MONOSTADIO

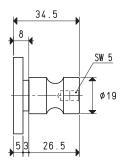
I supporti illustrati e descritti in questa pagina sono realizzati, di serie, in alluminio anodizzato ma, su richiesta, possono essere forniti anche in acciaio inox.

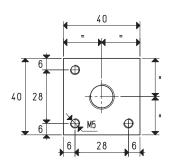
I supporti servono a fissare i generatori di vuoto monostadio all'automatismo, tramite un perno cilindrico scanalato o un perno sferico, la cui sede dovrà essere ricavata nell'automatismo stesso.


Sono adatti ai sistemi di presa robotizzati e consentono l'installazione rapida dei generatori di vuoto sugli appositi profili impiegati nel settore automotive.



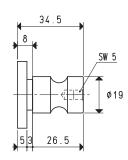
Art.	Per generatori	Materiale	Peso g
FCH 01	PVP 2	alluminio	60
FCH 01 INOX	PVP 3 PVP 2 PVP 3	acciaio inox	180

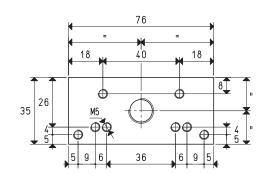



Art.	Per generatori	Materiale	Peso g
FCH 02	15 01 10	alluminio	72
	15 02 10		
	15 03 10		
	15 04 10		
	15 05 10		
	15 06 10		
	15 07 10		
FCH 02 INOX	15 01 10	acciaio inox	220
	15 02 10		
	15 03 10		
	15 04 10		
	15 05 10		
	15 06 10		
	15 07 10		

Rapporti di trasformazione: N (newton) = Kg x 9.81 (forza di gravità); inch = $\frac{mm}{25.4}$; pounds = $\frac{g}{453.6}$ = $\frac{Kg}{0.4536}$

8





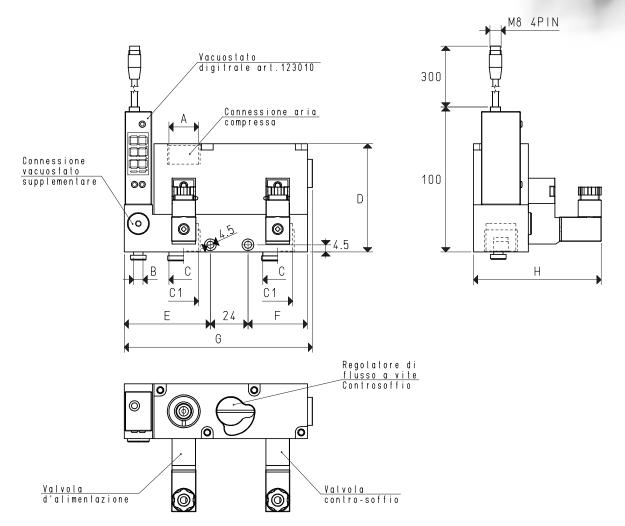
Art.	Per generatori	Materiale	Peso g
FCH 03	PVP 2	alluminio	39
	PVP 3		
FCH 03 INOX	PVP 2	acciaio inox	117
	PVP 3		

Art.	Per generatori	Materiale	Peso g
FCH 04	15 01 10	alluminio	52
	15 02 10		
	15 03 10		
	15 04 10		
	15 05 10		
	15 06 10		
	15 07 10		
FCH 04 INOX	15 01 10	acciaio inox	156
	15 02 10		
	15 03 10		
	15 04 10		
	15 05 10		
	15 06 10		
	15 07 10		

GRUPPO DI ALIMENTAZIONE VACUMANAGER SERIE VM

Le unità VACUMANAGER serie VM sono dei circuiti integrati, elettro-pneumatici, nati per l'alimentazione e la gestione di generatori di vuoto ,singolo stadio e multistadio.

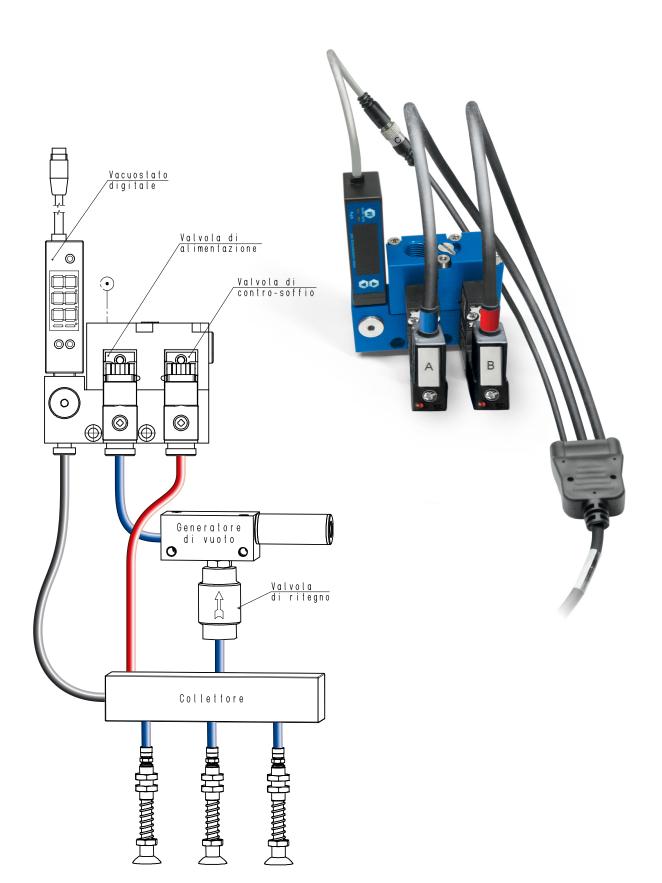
Le unità VM racchiudono in un corpo/distributore, ricavato dal pieno in alluminio anodizzato:


- _ Vacuostato digitale con display
- _ Valvola di alimentazione per aria compressa
- _ Valvola di contro-soffio
- _ Regolatore di flusso, per la valvola di contro-soffio.

Un circuito elettropneumatico di comando compatto che racchiude in sé tutti i componenti per la gestione della generazione vuoto e contro-soffio in un impianto di manipolazione dotato di ventose ed alimentato da generatori di vuoto pneumatici (singolo stadio o multistadio). In abbinamento ai cavi Energy Saving Vuototecnica, rappresentano la miglior soluzione in termine di efficientamento energetico, in quanto limitano il consumo dell'aria compressa che alimenta i generatori di vuoto pneumatici, al tempo strettamente necessario per lo svuotamento delle coppe delle ventose.

Una soluzione di risparmio energetico ancor più sentita ed apprezzata in tutte le manipolazioni con ventose per prodotti di ottima tenuta o con micro-porosità (lamiere, vetro, pannelli impiallacciati in legno o di plastica etc).

Vuototecnica raccomanda le unità VM anche per la gestione di tutti i sistemi di presa Octopus dotati di generatori di vuoto pneumatici e di valvole autoescludenti.



Art.	A Ø	B Ø tubo est.	C 1 Ø	C Ø tubo est.	D	E	F	G	Н	Portata max elettrovalvole 1/1"	Ass. elettrico	Peso g
VM 01	G1/4"	4		8	54	22	38	76	72	600 + 600	2	358
VM 03	G1/2"	4	G1/2"		69	56	37	120	82	2360 + 2360	2	372

Ricambi		VM 01	VM 03
Vacuostato digitale	art.	12 30 10	12 30 10
Elettrovalvola d'alimentazione e di soffiaggio NC	art.	00 15 447	00 15 447

N.B. Per ordinare il gruppo di alimentazione con elettrovalvola d'alimentazione NO, indicare il codice VM .. NO.

8

ACCESSORI E RICAMBI PER GRUPPO DI ALIMENTAZIONE VACUMANAGER SERIE VM

Set di cavi con energy saving integrato

Art.	Descrizione
00 15 203	Set di cavi con dispositivo, energy saving integrato, per l'allacciamento a: - Vacuostato digitale - Microelettrovalvola d'alimentazione NC - Microelettrovalvola di espulsione NC Lunghezza cavo= 5 mt

Set di cavi con energy saving integrato

Art.	Descrizione		
00 15 202	Set di cavi con dispositivo, energy saving integrato, per l'allacciamento a: - Vacuostato digitale		
- Microelettrovalvola d'alimentazione NO			
	- Microelettrovalvola di espulsione NC		
	Lunghezza cavo= 5 mt		

Cavo con connettore assiale

Art.	Descrizione
00 12 20	Cavo di collegamento elettrico con connettore assiale M8 - 4 pin per vacuostato digitale lunghezza 5 mt

Cavo con connettore radiale

Art.	Descrizione
00 12 21	Cavo di collegamento elettrico con connettore radiale M8 - 4 pin per vacuostato digitale lunghezza 5 mt

GRUPPO DI ALIMENTAZIONE VACUMANAGER SERIE VM

Connettore

Art.	Descrizione	
00 15 157	Connettore con LED per le microelettrovalvole	

Microelettrovalvola d'alimentazione NO

Art.	Descrizione
00 07 304	Microelettrovalvola NO con bobina elettrica a basso assorbimento integrata

Microelettrovalvola d'alimentazione e di soffiaggio NC

Art.	Descrizione
00 15 447	Microelettrovalvola NC con bobina elettrica a basso assorbimento integrata

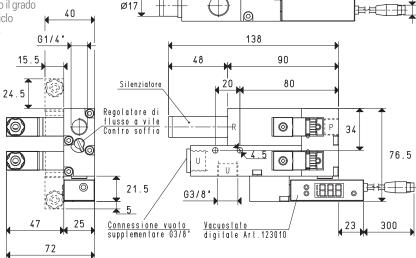
Vacuostato digitale

Art.	Descrizione
12 30 10	Vacuostato digitale

GENERATORI DI VUOTO MONOSTADIO E MULTIFUNZIONE SERIE MSVE

I generatori di vuoto di questa nuova serie, sono in grado di asservire completamente un sistema di presa a depressione. L'originale sistema di alimentazione dell'aria compressa tramite otturatori coassiali, consente l'apporto di grandi quantità d'aria, sia agli eiettori che al sistema di espulsione, garantendo così una maggiore rapidità di presa e di distacco del carico "preso". Dotati di eiettori monostadio, alimentati a bassa pressione (max 4 bar), hanno velocità di svuotamento elevatissime, rapportate alla loro capacità d'aspirazione, a tutto vantaggio di cicli di lavoro sempre più rapidi e performanti. Due microelettrovalvole gestiscono l'alimentazione dell'aria compressa all'eiettore del vuoto e al controsoffio di scarico, regolabile, quest'ultimo, per intensità e durata, tramite un regolatore di flusso a vite. La valvola di ritegno, integrata sulla connessione d'aspirazione, garantisce il

mantenimento del vuoto all'utilizzo in mancanza di corrente elettrica. Un vacuostato digitale con display e led di segnalazione delle commutazioni, gestisce l'alimentazione dell'aria compressa e fornisce un segnale per l'avvio ciclo in sicurezza.

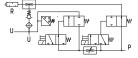

Un distributore d'alluminio anodizzato, con le connessioni per il vuoto, ha integrato un filtro d'aspirazione facilmente ispezionabile. Attivando la microelettrovalvola d'alimentazione dell'aria compressa, il generatore crea vuoto all'utilizzo; al raggiungimento del valore massimo impostato, il vacuostato, intervenendo sulla bobina elettrica della microelettrovalvola, interrompe l'alimentazione dell'aria e la ripristina solamente quando il valore di vuoto scende al di sotto del valore minimo.

Questa modulazione, oltre a mantenere il grado di vuoto entro i valori di sicurezza prestabiliti (isteresi), consente un notevole risparmio di aria compressa.

Un secondo segnale del vacuostato, anch'esso regolabile e indipendente dal primo, può essere impiegato per consentire l'avvio del ciclo quando il grado

di vuoto raggiunto è quello idoneo all'utilizzo. Terminato il ciclo di lavoro, si disattiva la microelettrovalvola di alimentazione dell'aria compressa al generatore, contemporaneamente, si attiva la microelettrovalvola d'espulsione per il ripristino rapido della pressione atmosferica all'utilizzo.

I generatori di vuoto MSVE possono essere installati in qualsiasi posizione e sono adatti per l'asservimento di sistemi di presa a ventose, per movimentare lamiere, vetri, marmi, ceramiche, plastica, cartoni, legno, ecc. e in particolare per il settore della robotica industriale, dove sono richiesti apparecchi con ottime prestazioni, con dimensioni e pesi sempre più ridotti.



30

N°2 Elettrovalvole

M8 4PIN

manuale

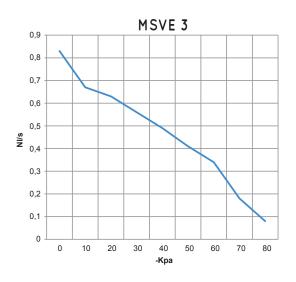
P=CONNESSIONE ARIA COMPRESSA

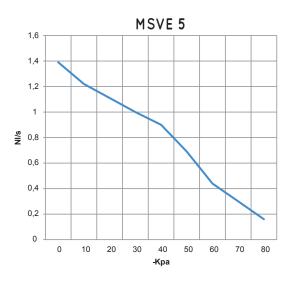
R=SCARICO

U=CONNESSIONE VUOTO

Art.			MSVE 3			MSVE 5	
Quantità di aria aspirata	m³/h	2.6	2.8	3.0	4.9	5.1	5.1
Massimo grado di vuoto	-KPa	40	61	85	40	61	85
Pressione finale	mbar ass.	600	390	150	600	390	150
Pressione di alimentazione	bar	2	3	4	2	3	4
Consumo di aria	NI/s	0.7	0.9	1.2	1.3	1.7	2.2
Max quantità d'aria soffiata a 4 bar	l/min			650			650
Posizione otturatore coassiale interno							
d'alimentazione				NO			NO
Assorbimento elettrovalvola d'alimentazione	W			2.0			2.0
Posizione otturatore coassiale interno							
d'espulsione				NC			NC
Assorbimento elettrovalvola d'espulsione	W			2.0			2.0
Tensione d'alimentazione	V			24DC			24DC
Uscita vacuostato				PNP			PNP
Grado di protezione	IP			40			40
Temperatura di utilizzo	°C			-10 / +60			-10 / +60
Livello di rumorosità alla							
pressione di alimentazione ottimale	dB(A)			48			44
Peso	g			493			493

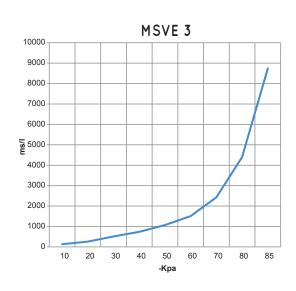
Ricambi		MSVE 3	MSVE 5
Kit di guarnizioni	art.	00 15 503	00 15 503
Vacuostato digitale	art.	12 30 10	12 30 10
Elettrovalvola d'alimentazione NO	art.	00 07 304	00 07 304
Elettrovalvola d'alimentazione			
e di soffiaggio NC	art.	00 15 447	00 15 447
Silenziatore	art.	SSX 1/8"	SSX 1/8"

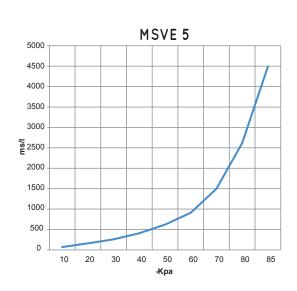

N.B. Per ordinare il generatore con otturatore coassiale d'alimentazione NC, indicare il codice dell'articolo MSVE..NC.


Per ordinare il generatore senza vacuostato digitale, indicare il codice MSVE..SV.

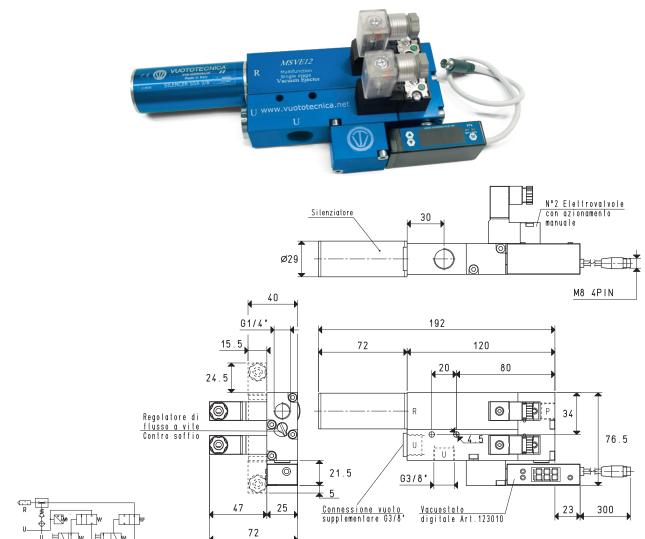
Rapporti di trasformazione: N (newton) = Kg x 9.81 (forza di gravità); inch = $\frac{mm}{25.4}$; pounds = $\frac{g}{453.6}$ Adattatori per filettature GAS - NPT disponibili a pag. 1.130

N.B. Tutti i valori di vuoto indicati in tabella sono validi alla normale pressione atmosferica di 1013 mbar ed ottenuti con una pressione di alimentazione costante. L'alimentazione dei generatori di vuoto, deve essere effettuata con aria compressa non lubrificata, filtrazione 5 micron, secondo norma ISO 8573-1 classe 4.





Generatore.	Press. alim.	Consumo aria		Por			ai diversi li aliment			(Pa)		Vuoto max
art.	bar	NI/s	0	10	20	30	40	50	60	70	80	-KPa
MSVE 3	4.0	1.2	0.83	0.67	0.63	0.56	0.49	0.41	0.34	0.18	0.08	85
MSVE 5	4.0	2.2	1.39	1.22	1.11	1.00	0.90	0.69	0.44	0.30	0.16	85


Tempi di evacuazione (ms/l=s/m³) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale

Generatore.	Press. alim.	Consumo aria	Ter	Tempi di evacuazione (ms/l = s/m³) ai diversi gradi di vuoto (-KPa) alla pressione di alimentazione ottimale								
art.	bar	NI/s	10	20	30	40	50	60	70	80	85	-KPa
MSVE 3	4.0	1.2	130	260	510	740	1070	1510	2430	4400	8740	85
MSVE 5	4.0	2.2	70	160	260	410	620	910	1500	2620	4490	85

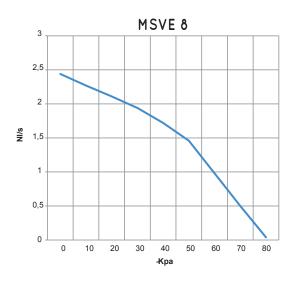
GENERATORI DI VUOTO MONOSTADIO E MULTIFUNZIONE MSVE 8 e MSVE 12

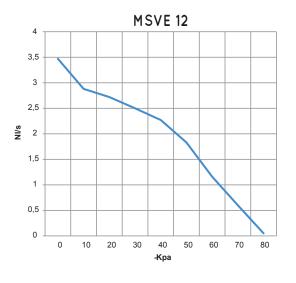
D D P	
-------	--

U=CONNESSIONE VUOTO

P=CONNESSIONE ARIA COMPRESS	A R=SCA	RICO U=0	CONNESSIO	NE VUOTO						
Art.			MSVE 8			MSVE 12				
Quantità di aria aspirata	m³/h	8.0	8.6	8.8	12.0	12.2	12.5			
Massimo grado di vuoto	-KPa	40	60	90	40	60	90			
Pressione finale	mbar ass.	600	400	100	600	400	100			
Pressione di alimentazione	bar	2	3	3.5	2	3	3.5			
Consumo di aria	NI/s	2.8	3.8	4.3	3.7	5.0	5.5			
Max quantità d'aria soffiata a 3.5 bar	l/min			600			600			
Posizione otturatore coassiale interno										
d'alimentazione				NO			NO			
Assorbimento elettrovalvola d'alimentazione	• W			2.0			2.0			
Posizione otturatore coassiale interno										
d'espulsione				NC			NC			
Assorbimento elettrovalvola d'espulsione	W			2.0			2.0			
Tensione d'alimentazione	V			24DC			24DC			
Uscita vacuostato				PNP			PNP			
Grado di protezione	IP			40			40			
Temperatura di utilizzo	°C			-10 / +60			-10 / +60			
Livello di rumorosità alla										
pressione di alimentazione ottimale	dB(A)			53			50			
Peso	g			580			620			

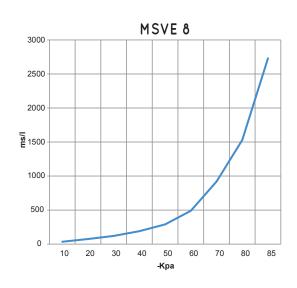
Ricambi		MSVE 8	MSVE 12
Kit di guarnizioni	art.	00 15 504	00 15 504
Vacuostato digitale	art.	12 30 10	12 30 10
Elettrovalvola d'alimentazione NO	art.	00 07 304	00 07 304
Elettrovalvola d'alimentazione			
e di soffiaggio NC	art.	00 15 447	00 15 447
Silenziatore	art.	SSX 3/8"	SSX 3/8"

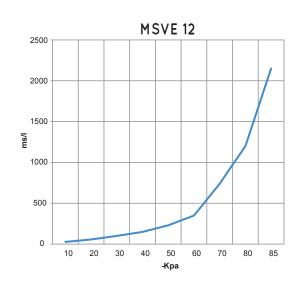

N.B. Per ordinare il generatore con otturatore coassiale d'alimentazione NC, indicare il codice dell'articolo MSVE..NC.


Per ordinare il generatore senza vacuostato digitale, indicare il codice MSVE..SV.

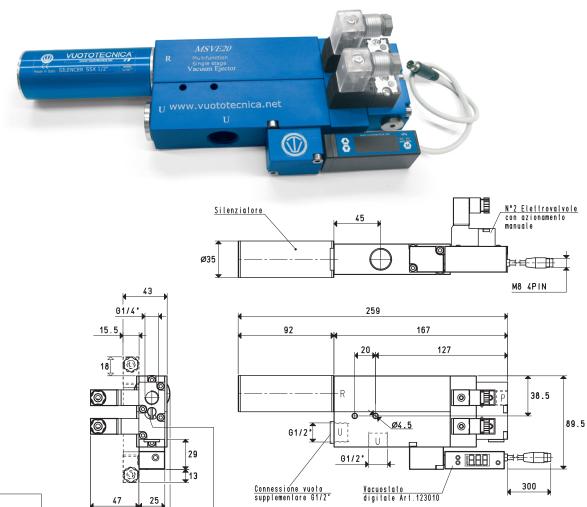
Rapporti di trasformazione: N (newton) = Kg x 9.81 (forza di gravità); inch = $\frac{mm}{25.4}$; pounds = $\frac{g}{453.6}$ = $\frac{Kg}{0.4536}$ Adattatori per filettature GAS - NPT disponibili a pag. 1.130

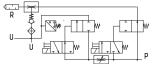
N.B. Tutti i valori di vuoto indicati in tabella sono validi alla normale pressione atmosferica di 1013 mbar ed ottenuti con una pressione di alimentazione costante. L'alimentazione dei generatori di vuoto, deve essere effettuata con aria compressa non lubrificata, filtrazione 5 micron, secondo norma ISO 8573-1 classe 4.





Generatore.	Press. alim.	Consumo aria		Por				gradi di tazione o		(Pa)		Vuoto max
art.	bar	NI/s	0	10	20	30	40	50	60	70	80	-KPa
MSVE 8	3.5	4.3	2.44	2.27	2.11	1.94	1.72	1.46	0.98	0.50	0.04	90
MSVE 12	3.5	5.5	3.47	2.88	2.72	2.50	2.27	1.83	1.16	0.60	0.05	90


Tempi di evacuazione (ms/l=s/m³) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale



Generatore.	Press. alim.	Consumo aria	Te	Vuoto max								
art.	bar	NI/s	10	20	30	40	50	60	70	80	85	-KPa
MSVE 8	3.5	4.3	35	75	120	190	290	490	920	1530	2730	90
MSVE 12	3.5	5.5	27	57	100	150	230	350	740	1200	2150	90

GENERATORI DI VUOTO MONOSTADIO E MULTIFUNZIONE MSVE 20

Kit di guarnizioni Vacuostato digitale

e di soffiaggio NC Silenziatore

Elettrovalvola d'alimentazione NO

Elettrovalvola d'alimentazione

P=CONNESSIONE ARIA COMPRESSA	A R=SC	CARICO	U=CONNESSIONE VUOTO)	
Art.				MSVE 20	
Quantità di aria aspirata	m³/h		18	19	20
Massimo grado di vuoto	-KPa		40	60	90
Pressione finale	mbar ass.		600	400	100
Pressione di alimentazione	bar		2	3	4
Consumo di aria	NI/s		4.9	6.6	8.0
Max quantità d'aria soffiata a 4 bar	l/min				650
Posizione otturatore coassiale interno					
d'alimentazione					NO
Assorbimento elettrovalvola d'alimentazione	W				2.0
Posizione otturatore coassiale interno					
d'espulsione					NC
Assorbimento elettrovalvola d'espulsione	W				2.0
Tensione d'alimentazione	V				24DC
Uscita vacuostato					PNP
Grado di protezione	IP				40
Temperatura di utilizzo	°C				-10 / +60
Livello di rumorosità alla	ID(A)				70
pressione di alimentazione ottimale	dB(A)				70
Peso	kg				1.04
Ricambi				MSVE 20	

00 15 560

12 30 10

00 07 304

00 15 447

SSX 1/2"

Regolatore di flusso a vite Contro soffio

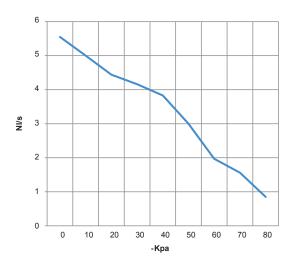
Silenziatore art.

N.B. Per ordinare il generatore con otturatore coassiale d'alimentazione NC, indicare il codice dell'articolo MSVE...NC.

Per ordinare il generatore senza vacuostato digitale, indicare il codice MSVE...SV.

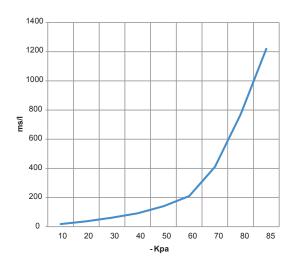
art.

art.


art.

art.

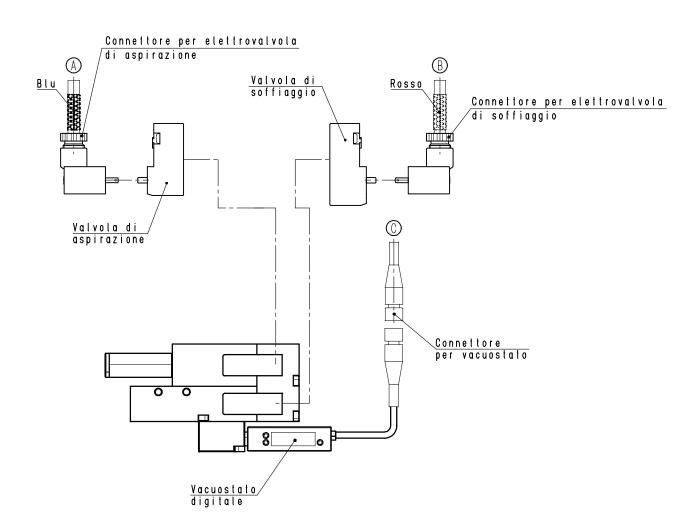
77


Rapporti di trasformazione: N (newton) = Kg x 9.81 (forza di gravità); inch = $\frac{mm}{25.4}$; pounds = $\frac{g}{453.6}$ = $\frac{Kg}{0.4536}$ Adattatori per filettature GAS - NPT disponibili a pag. 1.130

N.B. Tutti i valori di vuoto indicati in tabella sono validi alla normale pressione atmosferica di 1013 mbar ed ottenuti con una pressione di alimentazione costante. L'alimentazione dei generatori di vuoto, deve essere effettuata con aria compressa non lubrificata, filtrazione 5 micron, secondo norma ISO 8573-1 classe 4.

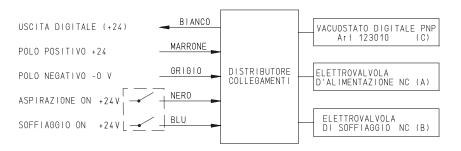
Generatore.	Press. alim.	Consumo aria		Poi			ai diversi Ii aliment			Pa)		Vuoto max
art.	bar	NI/s	0	10	20	30	40	50	60	70	80	-KPa
MSVE 20	4	8	5.55	5.00	4.44	4.16	3.83	3.00	1.97	1.56	0.85	90

Tempi di evacuazione (ms/l=s/m³) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale



	Press. alim.		Tempi di evacuazione (ms/l = s/m³) ai diversi gradi di vuoto (-KPa) alla pressione di alimentazione ottimale									Vuoto max
	bar	NI/s	10	20	30	40	50	60	70	80	85	-KPa
MSVE 20	4	8	18	37	62	92	140	210	410	770	1220	90

ACCESSORI E RICAMBI PER GENERATORI DI VUOTO MULTISTADIO E MULTIFUNZIONE, SERIE MSVE



ACCESSORI E RICAMBI PER GENERATORI DI VUOTO MULTISTADIO E MULTIFUNZIONE, SERIE MSVE

Set di cavi con energy saving integrato

Art.	Descrizione						
00 15 203	Set di cavi con dispositivo, energy saving integrato, per l'allacciamento a:						
	 Vacuostato digitale Microelettrovalvola d'alimentazione NC 						
	- Microelettrovalvola di ammentazione NC						
	Lunghezza cavo= 5 mt						

Connettore

Art.	Descrizione
00 15 157	Connettore con LED per le microelettrovalvole

Cavo con connettore assiale

Art.	Descrizione
00 12 20	Cavo di collegamento elettrico con connettore assiale M8 - 4 pin per vacuostato digitale lunghezza 5 mt

Cavo con connettore radiale

Art.	Descrizione
00 12 21	Cavo di collegamento elettrico con connettore radiale M8 - 4 pin per vacuostato digitale lunghezza 5 mt

ACCESSORI E RICAMBI PER GENERATORI DI VUOTO MULTISTADIO E MULTIFUNZIONE, SERIE MSVE

Microelettrovalvola d'alimentazione NO

Art.	Descrizione
00 07 304	Microelettrovalvola NO con bobina elettrica a basso assorbimento integrata e interfaccia

Microelettrovalvola d'alimentazione e di soffiaggio NC

Art.	Descrizione
00 15 447	Microelettrovalvola NC con bobina elettrica a basso assorbimento integrata e interfaccia

Vacuostato digitale

Art.	Descrizione
12 30 10	Vacuostato digitale

8

GENERATORI DI VUOTO MONOSTADIO E MULTIFUNZIONE SERIE AVG - GENERALITÀ

Sono unità di vuoto autonome, in grado di asservire completamente un sistema di presa a depressione. Studiati per il settore AUTOMOTIVE, sono dotati di eiettori monostadio che consentono, a parità di portata dei generatori con eiettori multipli, una maggiore rapidità di presa.

Di serie, hanno integrato un dispositivo pneumatico per il risparmio energetico.

Sono costituiti da un monoblocco d'alluminio anodizzato, all'interno del quale sono installati gli eiettori, la valvola servopilotata per l'alimentazione dell'aria compressa al generatore e ricavate le camere di vuoto e le varie connessioni.

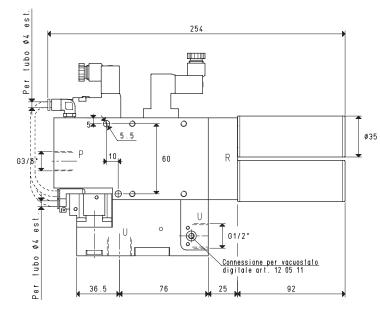
Esternamente al monoblocco sono invece assemblati:

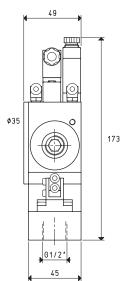
- Una elettrovalvola ad impulsi, bistabile, per il comando della valvola d'alimentazione.
- Una elettrovalvola per il soffiaggio dell'aria compressa d'espulsione.
- Un regolatore di flusso a vite per il dosaggio dell'aria compressa d'espulsione.
- Due silenziatori per ridurre la rumorosità dell'aria espulsa.
- Un distributore in alluminio con le connessioni del vuoto, con integrati :
- Un vacuostato pneumatico per la gestione dell'aria compressa d'alimentazione, in funzione del grado di vuoto stabilito (risparmio energetico).
- Una valvola di ritegno per il mantenimento del vuoto all'utilizzo, in mancanza di corrente elettrica o aria compressa.
- Un filtro d'aspirazione, facilmente ispezionabile attraverso un coperchio in policarbonato trasparente.

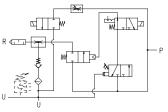
FUNZIONAMENTO

Fornendo un impulso elettrico all'elettrovalvola bistabile, si attiva la valvola di alimentazione dell'aria compressa e si crea vuoto all'utilizzo; al raggiungimento del valore massimo prestabilito, il vacuostato pneumatico, intervenendo sulla valvola servopilotata, interrompe l'alimentazione dell'aria compressa e la ripristina solamente quando il valore scende al di sotto del valore minimo impostato.

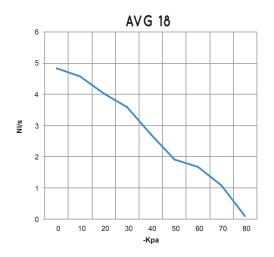
Oltre a mantenere il grado di vuoto entro i valori di sicurezza prestabiliti, questa modulazione consente un notevole risparmio di aria compressa ed avviene anche in assenza di corrente elettrica. Terminato il ciclo di lavoro,mediante un impulso elettrico si disattiva l'elettrovalvola d'alimentazione e, contemporaneamente, si attiva l'elettrovalvola di espulsione per il ripristino rapido della pressione atmosferica all'utilizzo. I generatori di vuoto AVG, sono predisposti per l'installazione di un vacuostato digitale sull'utilizzo. Anche questi generatori di vuoto, possono essere installati in qualsiasi posizione.

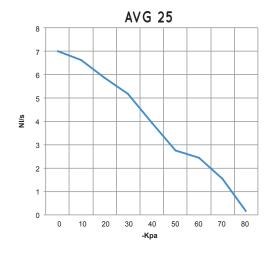

SETTORI D'IMPIEGO


I generatori di vuoto AVG sono adatti all'asservimento di sistemi di presa a ventose, per la movimentazione di lamiere, vetri, marmi, ceramiche, plastica, cartoni, legno,ecc. ed in particolare, per il settore AUTOMOTIVE, dove sono sempre più richiesti apparecchi con ottime prestazioni, ma con dimensioni e pesi contenuti.



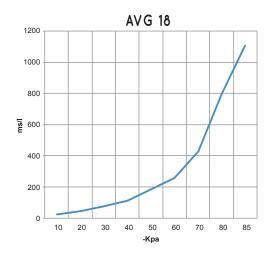
P=CONNESSIONE ARIA COMPRESS	A R=SC	ARICO	U=CONNES	SIONE VUO	го				
Art.		AVG 1	8		AVG 25				
Quantità di aria aspirata	m³/h	16.5	5 17.0	17.4	24.5	25.0	25.2		
Massimo grado di vuoto	-KPa	60	70	85	60	70	85		
Pressione finale	mbar ass.	400	300	150	400	300	150		
Pressione di alimentazione	bar	4	5	6	4	5	6		
Pressione di alimentazione ottimale	bar			6			6		
Consumo di aria	NI/s	4.3	5.3	6.4	6.5	8.0	9.6		
Max quantità d'aria soffiata a 6 bar	l/min			140			140		
Elettrovalvola d'alimentazione bi-stabile	NO/NC			NO/NC			NO/NC		
Assorbimento elettrico	W			1			1		
Posizione elettrovalvola d'espulsione	NC			NC			NC		
Assorbimento elettrico	W			4			4		
Tensione d'alimentazione	V			24DC			24DC		
Grado di protezione	IP			65			65		
Temperatura di utilizzo	°C			-10 / +60			-10 / +60		
Livello di rumorosità alla									
pressione di alimentazione ottimale	dB(A)			63			65		
Peso	Kg			1.67			1.67		

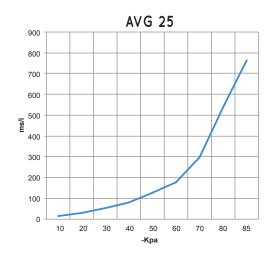

N.B. Per ordinare il generatore con il vacuostato digitale installato, aggiungere la lettera V al codice dell'articolo (esempio: AVG 25 V).


N.B. Tutti i valori di vuoto indicati in tabella sono validi alla normale pressione atmosferica di 1013 mbar ed ottenuti con una pressione di alimentazione costante.

L'alimentazione dei generatori di vuoto, deve essere effettuata con aria compressa non lubrificata, filtrazione 5 micron, secondo norma ISO 8573-1 classe 4.

GENERATORI DI VUOTO MONOSTADIO E MULTIFUNZIONE AVG 18 e AVG 25

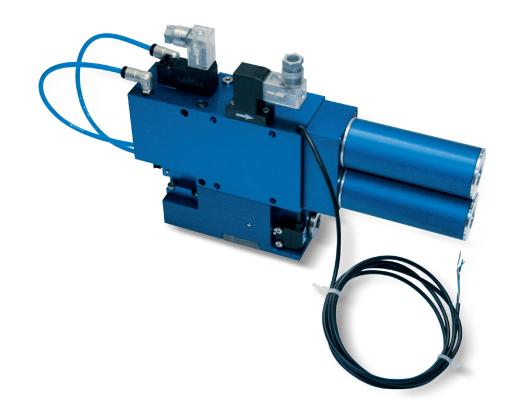

Portata d'aria (NI/s) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale

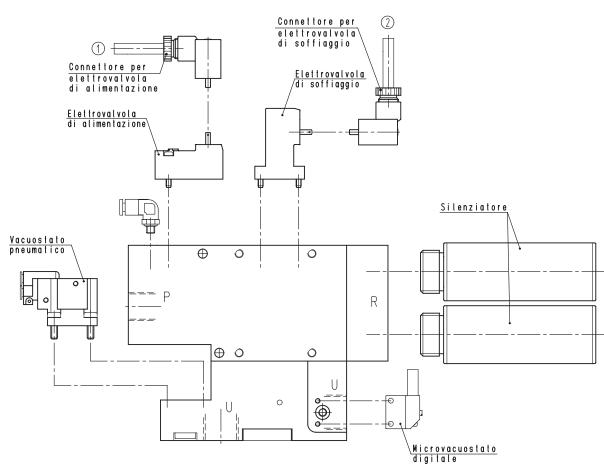


Generatore.	Press. alim.	Consumo aria	Portata d'aria (NI/s) ai diversi gradi di vuoto (-KPa) alla pressione di alimentazione ottimale								Vuoto max	
art.	bar	NI/s	0	10	20	30	40	50	60	70	80	-KPa
AVG 18	6.0	6.4	4.83	4.58	4.04	3.58	2.72	1.90	1.68	1.07	0.10	85
AVG 25	6.0	9.6	7.00	6.63	5.86	5.18	3.94	2.76	2.44	1.54	0.15	85

Tempi di evacuazione (ms/l--s/m³) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale

Generatore.	Press. alim.	Consumo aria	Tempi di evacuazione (ms/l = s/m³) ai diversi gradi di vuoto (-KPa) alla pressione di alimentazione ottimale							uoto (-KPa) Vuoto ma			
art.	bar	NI/s	10	20	30	40	50	60	70	80	85	-KPa	
AVG 18	6.0	6.4	22	44	75	115	185	258	430	798	1107	85	
AVG 25	6.0	9.6	15	30	52	80	128	178	297	538	764	85	


ACCESSORI E RICAMBI A RICHIESTA


7.00200011.211.071.1.101.7111.0111.2017.1			
Art.		AVG 18	AVG 25
Kit di guarnizioni	art.	00 KIT AVG 18	00 KIT AVG 25
Silenziatori di scarico	art.	SSX 3	/4 R
Microvacuostato digitale	art.	12 05	11 *
Elettrovalvola bi-stabile di alimentazione	art.	00 15	297
Elettrovalvola di soffiaggio NC	art.	00 15	175

^{*} Completare il codice indicando la tipologia elettrica dell'uscita: P = PNP; N = NPN

8

ACCESSORI E RICAMBI PER GENERATORI DI VUOTO MONOSTADIO E MULTIFUNZIONE, SERIE AVG

Microvacuostato digitale

Art.	Descrizione
12 05 11 *	Microvacuostato digitale

^{*} Completare il codice indicando la tipologia elettrica dell'uscita: P = PNP; N = NPN

Connettore

Art.	Descrizione
00 15 157	Connettore con LED per le elettrovalvole

Elettrovalvola bi-stabile

Art.	Descrizione
00 15 297	Elettrovalvola bi-stabile di alimentazione

Elettrovalvola NC

Art.	Descrizione
00 15 175	Elettrovalvola di soffiaggio NC

Silenziatore

Art.	Descrizione
SSX 3/4" R	Silenziatore di scarico

GENERATORI DI VUOTO MULTISTADIO - GENERALITÀ

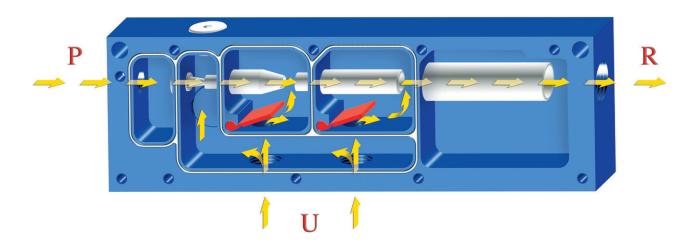
I generatori di vuoto multistadio di nostra produzione, sono apparecchi atti a produrre una depressione massima del 90%, pari ad un grado di vuoto finale di 100 mbar assoluti, con diverse capacità d'aspirazione. Funzionano con l'impiego di aria compressa da 1 a 6 bar.

Principio di lavoro

Ogni eiettore è basato sul principio Venturi: il fluido d'alimentazione (aria compressa) viene fatto affluire ad alta velocità da un tubo convergente, nel fluido che deve essere estratto (volume d'aria d'aspirare); il miscuglio così formato viene avviato in due o tre tubi divergenti, dove la sua energia cinetica si trasforma in energia di pressione, atta a farlo penetrare nell'ambiente a pressione più alta (pressione atmosferica allo scarico).

Caratteristiche tecniche

Il vantaggio dei generatori di vuoto multistadio consiste nello sfruttare l'energia cinetica dell'aria compressa d'alimentazione, attraverso più eiettori in linea opportunamente dimensionati, prima di scaricarla nell'atmosfera. Questo sistema consente, a parità di portata, un minor consumo d'aria compressa rispetto ai generatori di vuoto monostadio. La capacità d'aspirazione o portata è indirettamente proporzionale al differenziale di pressione esistente tra la pressione del fluido d'aspirare e quella esterna (pressione atmosferica).


Le ridotte dimensioni e la leggerezza rendono i generatori di vuoto multistadio compatti e poco ingombranti in rapporto alla loro grande capacità d'aspirazione.

L'assenza di parti in movimento li rende particolarmente silenziosi e ne consente l'uso continuo, senza sviluppo di calore.

Essendo alimentati solamente da aria compressa, sono antideflagranti e possono essere impiegati in ambienti di lavoro con temperature variabili da -20 a +80 °C.

Sono interamente realizzati con materiali inossidabili.

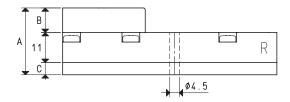
Per le loro caratteristiche, è sufficiente una buona filtrazione dell'aria compressa d'alimentazione e dell'aria aspirata, per eliminare qualsiasi forma di manutenzione.

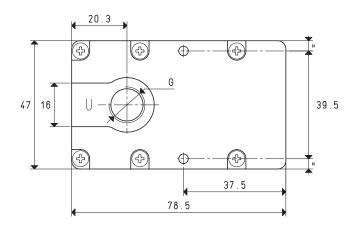
P = Connessione aria compressa

R = Scarico aria

U = Connessione vuoto

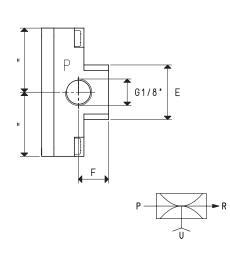
GENERATORI DI VUOTO MULTISTADIO SERIE M


Caratterizzati da eiettori multipli di nuova concezione, assemblati su piccoli moduli, questi generatori multistadio si distinguono per la loro grande capacità d'aspirazione, rapportata alle loro ridotte dimensioni d'ingombro.


Alimentati da aria compressa ad una pressione ottimale di $4 \div 5$ bar, sono in grado di produrre una depressione massima pari all'85% ed una capacità d'aspirazione di

 $3,6 \div 18 \text{ m}^3/\text{h}$, a secondo del numero dei moduli di cui sono costituiti. Il filtro silenziatore è integrato al loro interno.

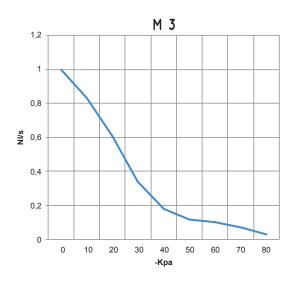
Sono interamente realizzati con leghe leggere anodizzate e possono essere installati in qualsiasi posizione. I generatori di vuoto multistadio di questa serie sono adatti per l'asservimento di sistemi di presa a ventose ed, in particolare, per il settore della robotica industriale, dove sono richiesti apparecchi con ottime prestazioni d'esercizio, ma con dimensioni e pesi ridottissimi.

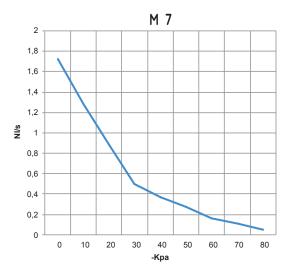


R=SCARICO

P=CONNESSIONE ARIA COMPRESSA

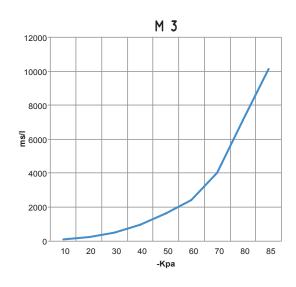
Art.			М 3			М7	
Quantità aria aspirata	m³/h	3	3.4	3.6	5.4	5.8	6.2
Massimo grado di vuoto	-KPa	62	82	85	62	82	85
Pressione finale	mbar ass.	380	180	150	380	180	150
Pressione di alimentazione	bar	3	4	5	3	4	5
Pressione di alimentazione ottimale	bar			5			5
Consumo di aria	NI/s	0.5	0.7	0.8	0.8	1.2	1.4
Temperatura di lavoro	°C			-10 / +80			-10 / +80
Livello di rumorosità alla pressione di alimentazione ottimale	dB(A)			64			70
Peso	g			109			111
A				24.5			25.5
В				9			10
C				4.5			4.5
E	Ø			20			24
F				11			12
G	Ø			G1/4"			G3/8"


U=CONNESSIONE VUOTO

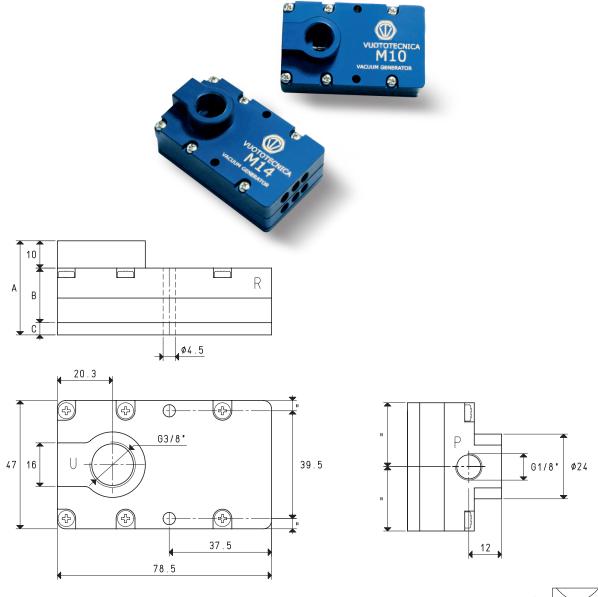

Ricambi		М 3	М 7
Kit di guarnizioni e valvole a lamella	art.	00 KIT M 3	00 KIT M 7
Silenziatore di scarico	art.	00 15 150	00 15 150

N.B. Tutti i valori di vuoto indicati in tabella sono validi alla normale pressione atmosferica di 1013 mbar ed ottenuti con una pressione di alimentazione costante.

L'alimentazione dei generatori di vuoto, deve essere effettuata con aria compressa non lubrificata, filtrazione 5 micron, secondo norma ISO 8573-1 classe 4.



Generatore.	Press. alim.	Consumo aria		Por	tata d'ari alla pre	a (NI/s) a essione d	ai diversi li aliment	gradi di azione o	vuoto (-ŀ ttimale	(Pa)		Vuoto max
art. bar	Dar	NI/s	0	10	20	30	40	50	60	70	80	-KPa
М 3	5.0	0.8	1.00	0.83	0.61	0.34	0.18	0.12	0.10	0.07	0.03	85
М 7	5.0	1.4	1.72	1.28	0.89	0.50	0.37	0.27	0.16	0.11	0.05	85


Tempi di evacuazione (ms/l=s/m³) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale

Generatore.	Press. alim.	Consumo aria	Tempi di evacuazione (ms/l = s/m³) ai diversi gradi di vuoto (-KPa) alla pressione di alimentazione ottimale									
art. bar	NI/s	10	20	30	40	50	60	70	80	85	-KPa	
М 3	5.0	0.8	106	244	491	969	1642	2398	4004	7128	10122	85
М 7	5.0	1.4	61	142	285	563	954	1394	2328	4144	5885	85

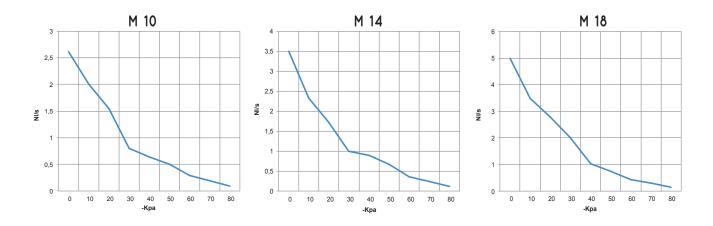
р.	$\overline{}$	$\overline{}$	 ► R
Γ-			
	1		

P=CONNESSIONE ARIA COMPRE	SSA R=S0	CARICO	U=CC	NNESSIONE	VUOTO						
Art.			M 10			M 14			M 18		
Quantità aria aspirata	m³/h	7.7	8.5	9.4	10.2	11.6	12.6	14.8	16.5	18.0	
Massimo grado di vuoto	-KPa	62	82	85	62	82	85	62	82	85	
Pressione finale	mbar ass.	380	180	150	380	180	150	380	180	150	
Pressione di alimentazione	bar	3	4	5	3	4	5	3	4	5	
Pressione di alimentazione ottimale	bar			5			5			5	
Consumo di aria	NI/s	1.2	1.6	1.9	1.7	2.1	2.5	2.3	2.9	3.6	
Temperatura di lavoro	°C		-	10 / +80		-	10 / +80			-10 / +80	
Livello di rumorosità alla pressione di alimentazione ottimale	dB(A)			72			72			76	
Peso	g			144			145			150	
A				34.5			34.5			44.5	
В				20			20			30	
C				4.5			4.5			4.5	
Ricambi			M 10			M 14			M 18		
Kit di guarnizioni e valvole a lamella	art.	0	0 KIT M	10	0	0 KIT M	14	00) KIT M	18	

N.B. Tutti i valori di vuoto indicati in tabella sono validi alla normale pressione atmosferica di 1013 mbar ed ottenuti con una pressione di alimentazione costante.

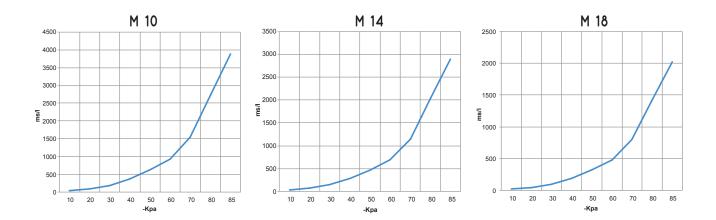
L'alimentazione dei generatori di vuoto, deve essere effettuata con aria compressa non lubrificata, filtrazione 5 micron, secondo norma ISO 8573-1 classe 4.

N°2 00 15 150


art.

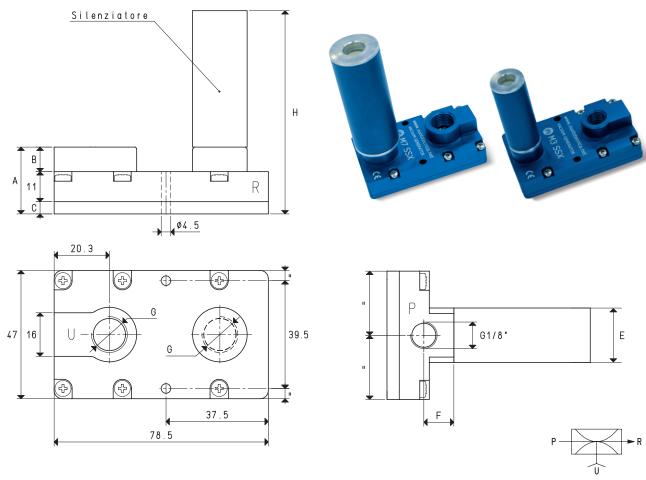
N°3 00 15 150

N°2 00 15 150


Silenziatore di scarico

Generatore.	Press. alim.	Consumo aria		Por			ai diversi li aliment			(Pa)		Vuoto max
arı.	art. bar NI/s	0	10	20	30	40	50	60	70	80	-KPa	
М 10	5.0	1.9	2.61	2.00	1.55	0.80	0.64	0.50	0.29	0.19	0.09	85
M 14	5.0	2.5	3.50	2.33	1.72	1.00	0.89	0.67	0.35	0.24	0.11	85
M 18	5.0	3.6	5.00	3.50	2.78	2.02	1.02	0.75	0.44	0.30	0.14	85

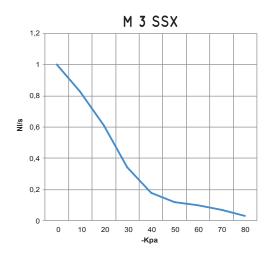
Tempi di evacuazione (ms/l=s/m³) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale

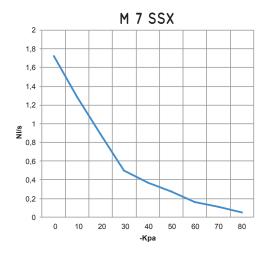


Generatore.	Press. alim.	Consumo aria	Tempi di evacuazione (ms/l = s/m³) ai diversi gradi di vuoto (-KPa) alla pressione di alimentazione ottimale							Pa)	Vuoto max	
art.	bar	NI/s	10	20	30	40	50	60	70	80	85	-KPa
M 10	5.0	1.9	40	93	188	371	629	918	1534	2731	3878	85
M 14	5.0	2.5	30	69	140	276	469	685	1144	2036	2892	85
M 18	5.0	3.6	21	48	98	193	327	478	799	1423	2020	85

GENERATORI DI VUOTO MULTISTADIO SERIE M.. SSX

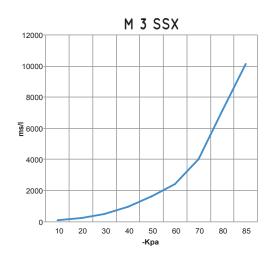
Sono gli stessi generatori di vuoto della serie M descritti in precedenza, con le medesime caratteristiche tecniche; si differenziano per la loro maggiore silenziosità. Su questi, infatti, oltre al silenziatore integrato al loro interno, viene installato esternamente un silenziatore SSX, in grado di abbattere ulteriormente la rumorosità. L'impiego è lo stesso della serie M, ma questi generatori sono consigliati quando nell'ambiente di lavoro il livello di rumorosità deve essere mantenuto entro valori molto hassi

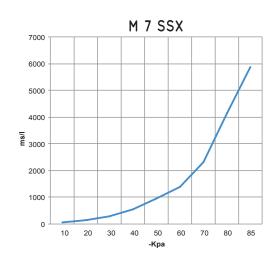

P=CONNESSIONE ARIA COMPRE	SSA R=S0	CARICO	U=C	ONNESSI	ONE VUOTO					
Art.	Art.			M 3 SSX		M 7 SSX				
Quantità di aria aspirata	m³/h		3.0	3.4	3.6	5.4	5.8	6.2		
Massimo grado di vuoto	-KPa		62	82	85	62	82	85		
Pressione finale	mbar ass.		380	180	150	380	180	150		
Pressione di alimentazione	bar		3	4	5	3	4	5		
Pressione di alimentazione ottimale	bar				5			5		
Consumo di aria	NI/s		0.5	0.7	0.8	8.0	1.2	1.4		
Temperatura di lavoro	°C				-10 / +80			-10 / +80		
Livello di rumorosità alla pressione di alimentazione ottimale	dB(A)				52			58		
Peso	g				109			111		
A					24.5			25.5		
В					9			10		
С					4.5			4.5		
E	Ø				20			29		
F					11			12		
G	Ø				G1/4"			G3/8"		
Н					74.5			97.5		


Ricambi		M 3 SSX	M 7 SSX
Silenziatore	art.	SSX 1/4"	SSX 3/8"
Silenziatore di scarico	art.	00 15 150	00 15 150
Kit di guarnizioni e valvole a lamella	art.	00 KIT M 3	00 KIT M 7

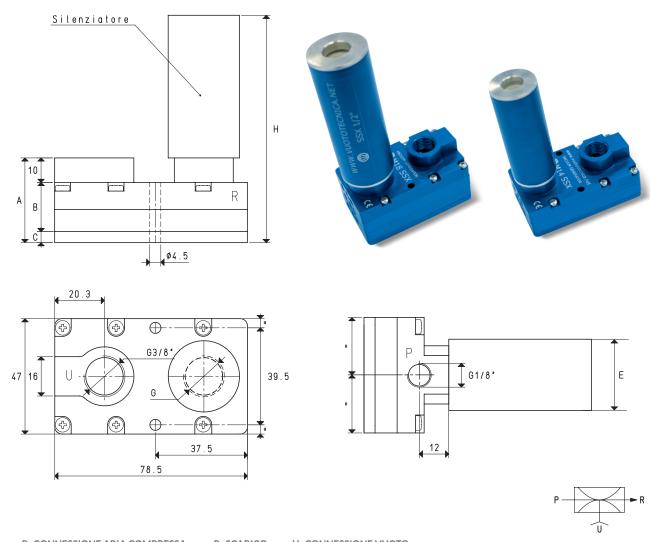
N.B. Tutti i valori di vuoto indicati in tabella sono validi alla normale pressione atmosferica di 1013 mbar ed ottenuti con una pressione di alimentazione costante.

L'alimentazione dei generatori di vuoto, deve essere effettuata con aria compressa non lubrificata, filtrazione 5 micron, secondo norma ISO 8573-1 classe 4.





Generatore.	Press. alim.	Consumo aria	Portata d'aria (NI/s) ai diversi gradi di vuoto (-KPa) alla pressione di alimentazione ottimale							Vuoto max		
art.	bar	NI/s	0	10	20	30	40	50	60	70	80	-KPa
M 3 SSX	5.0	0.8	1.00	0.83	0.61	0.34	0.18	0.12	0.10	0.07	0.03	85
M 7 SSX	5.0	1.4	1.72	1.28	0.89	0.50	0.37	0.27	0.16	0.11	0.05	85


Tempi di evacuazione $(ms/l=s/m^a)$ ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale

Generatore.	Press. alim.	Consumo aria	Te	Tempi di evacuazione (ms/l = s/m³) ai diversi gradi di vuoto (-KPa) alla pressione di alimentazione ottimale								
art.	bar	NI/s	10	20	30	40	50	60	70	80	85	-KPa
M 3 SSX	5.0	0.8	106	244	491	969	1642	2398	4004	7128	10122	85
M 7 SSX	5.0	1.4	61	142	285	563	954	1394	2328	4144	5885	85

P=CONNESSIONE ARIA COMPRE	33A K-3C	ARICO		ONNESSION						
Art.			M 10 S	SX ————		M 14 S	SX		M 18 S	SX
Quantità di aria aspirata	m³/h	7.7	8.5	9.4	10.2	11.5	12.6	14.8	16.5	18.0
Massimo grado di vuoto	-KPa	62	82	85	62	82	85	62	82	85
Pressione finale	mbar ass.	380	180	150	380	180	150	380	180	150
Pressione di alimentazione	bar	3	4	5	3	4	5	3	4	5
Pressione di alimentazione ottimale	bar			5			5			5
Consumo di aria	NI/s	1.2	1.6	1.9	1.7	2.1	2.5	2.3	2.9	3.6
Temperatura di lavoro	°C			-10 / +80			-10 / +80			-10 / +80
Livello di rumorosità alla pressione di alimentazione ottimale	dB(A)			60			62			66
Peso	g			144			145			150
A				34.5			34.5			44.5
В				20			20			30
C				4.5			4.5			4.5
E	Ø			29			29			35
G	Ø			G3/8"			G3/8"			G1/2"
Н				106.5			106.5			136.5
Ricambi			M 10 S	SX		M 14 S	SX		M 18 S	SX

N.B. Tutti i valori di vuoto indicati in tabella sono validi alla normale pressione atmosferica di 1013 mbar ed ottenuti con una pressione di alimentazione costante.

L'alimentazione dei generatori di vuoto, deve essere effettuata con aria compressa non lubrificata, filtrazione 5 micron, secondo norma ISO 8573-1 classe 4.

SSX 3/8"

N°2 00 15 150

00 KIT M 10

art.

art.

art.

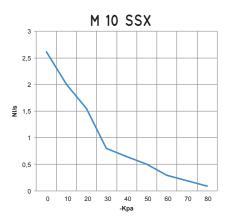
SSX 1/2"

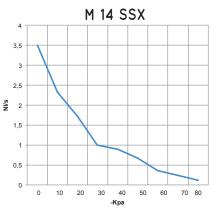
N°3 00 15 150

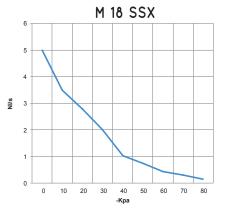
00 KIT M 18

SSX 3/8"

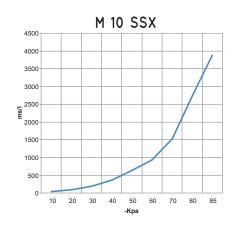
N°2 00 15 150

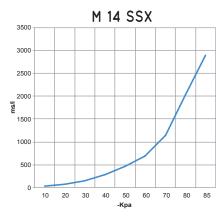

00 KIT M 14

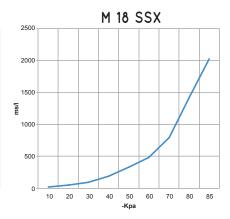

Silenziatore


Silenziatore di scarico

Kit di guarnizioni e valvole a lamella

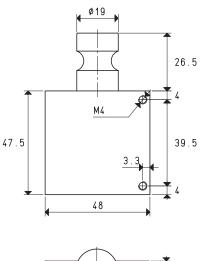


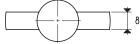




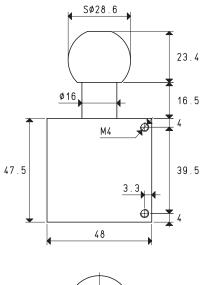
Generatore.	Press. alim.	Consumo aria		Portata d'aria (NI/s) ai diversi gradi di vuoto (-KPa) alla pressione di alimentazione ottimale									
art.	bar	NI/s	0	10	20	30	40	50	60	70	80	-KPa	
M 10 SSX	5.0	1.9	2.61	2.00	1.55	0.80	0.64	0.50	0.29	0.19	0.09	85	
M 14 SSX	5.0	2.5	3.50	2.33	1.72	1.00	0.89	0.67	0.35	0.24	0.11	85	
M 18 SSX	5.0	3.6	5.00	3.50	2.78	2.02	1.02	0.75	0.44	0.30	0.14	85	

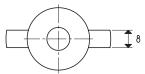
Tempi di evacuazione (ms/l=s/m³) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale


Generatore.	Press. alim.	Consumo aria	Tempi di evacuazione (ms/l = s/m³) ai diversi gradi di vuoto (-KPa) alla pressione di alimentazione ottimale													Pa)	Vuoto max
art.	bar	NI/s	10	20	30	40	50	60	70	80	85	-KPa					
M 10 SSX	5.0	1.9	40	93	188	371	629	918	1534	2731	3878	85					
M 14 SSX	5.0	2.5	30	69	140	276	469	685	1144	2036	2892	85					
M 18 SSX	5.0	3.6	21	48	98	193	327	478	799	1423	2020	85					


SUPPORTI DI FISSAGGIO PER GENERATORI DI VUOTO MULTISTADIO SERIE M

I supporti illustrati e descritti in questa pagina sono realizzati, di serie, in alluminio anodizzato ma, su richiesta, possono essere forniti anche in acciaio inox. I supporti servono a fissare i generatori di vuoto multistadio della serie M all'automatismo, tramite un perno cilindrico scanalato o un perno sferico, la cui sede dovrà essere ricavata nell'automatismo stesso.


Sono adatti ai sistemi di presa robotizzati e consentono l'installazione rapida dei generatori di vuoto sugli appositi profili impiegati nel settore automotive.



Art.	Per generatori	Materiale	Peso g
00 FCH 23	M 3 - M 7 - M 10 - M 14 - M 18	alluminio	63
00 FCH 22	M 3 - M 7 - M 10 - M 14 - M 18	acciaio inox	191

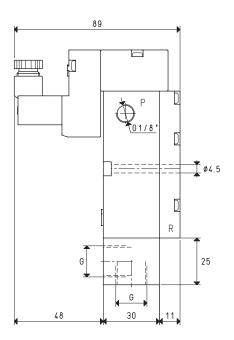
Art.	Per generatori	Materiale	Peso g
00 FCH 13	M 3 - M 7 - M 10 - M 14 - M 18	alluminio	85
00 FCH 12	M 3 - M 7 - M 10 - M 14 - M 18	acciaio inox	256

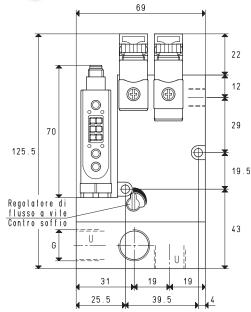
GENERATORI DI VUOTO MULTISTADIO E MULTIFUNZIONE SERIE MVG - GENERALITÀ

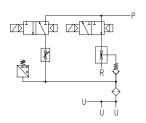
Questi generatori sono vere e proprie unità di vuoto autonome, in grado di asservire completamente un sistema di presa a depressione. Si distinguono per la loro compattezza e per la grande capacità d'aspirazione, rapportata alle loro ridotte dimensioni d'ingombro.

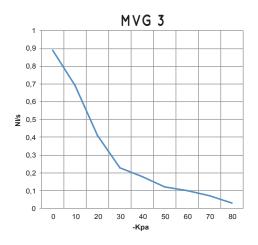
Sono costituiti da un monoblocco d'alluminio anodizzato, sul quale sono assemblati:

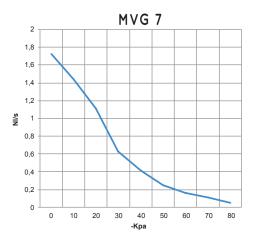
- Un generatore di vuoto multistadio, modulare e silenziato.
- Una microelettrovalvola per l'alimentazione dell'aria compressa al generatore.
- Una microelettrovalvola per il soffiaggio dell'aria compressa d'espulsione.
- Un regolatore di flusso a vite per il dosaggio dell'aria d'espulsione.
- Una valvola di ritegno unidirezionale, posta sull'aspirazione, per il mantenimento del vuoto all'utilizzo in mancanza di corrente elettrica.
- Un vacuostato digitale con display e led di segnalazione delle commutazioni, idoneo a gestire l'alimentazione dell'aria compressa e di fornire un segnale per l'avvio ciclo in sicurezza.
- Un distributore d'alluminio anodizzato, con le connessioni per il vuoto ed un filtro integrato facilmente ispezionabile.


Attivando la microelettrovalvola d'alimentazione dell'aria compressa, il generatore crea vuoto all'utilizzo; al raggiungimento del valore massimo prestabilito, il vacuostato, intervenendo sulla bobina elettrica della microelettrovalvola, interrompe l'alimentazione dell'aria e la ripristina quando il valore di vuoto scende al di sotto del valore minimo. Questa modulazione, oltre a mantenere il grado di vuoto entro i valori di sicurezza prestabiliti (isteresi), consente un notevole risparmio di aria compressa. Un secondo segnale del vacuostato, anch'esso regolabile e indipendente dal primo, può essere impiegato per consentire l'avvio del ciclo quando il grado di vuoto raggiunto è quello idoneo all'utilizzo. Terminato il ciclo di lavoro, si disattiva la microelettrovalvola di alimentazione dell'aria al generatore e, contemporaneamente, si attiva la microelettrovalvola d'espulsione per il ripristino rapido della pressione atmosferica all'utilizzo.

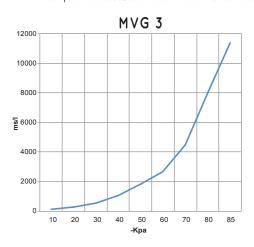

I generatori di vuoto multifunzione MVG possono essere installati in qualsiasi posizione e sono adatti per l'asservimento di sistemi di presa a ventose, per movimentare lamiere, vetri, marmi, ceramiche, plastica, cartoni, legno, ecc. ed in particolare per il settore della robotica industriale, dove sono richiesti apparecchi con ottime prestazioni, ma con dimensioni e pesi ridottissimi.

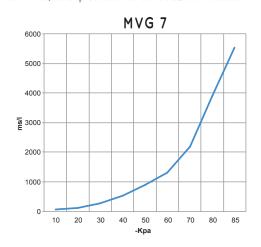



P=CONNESSIONE ARIA COMPRESS	A R=SCARICO) U=(CONNESSIO	ONE VUOTO				
Art.			MVG 3		MVG 7			
Quantità di aria aspirata	m³/h	2.8	3.0	3.2	5.6	6.0	6.6	
Massimo grado di vuoto	-KPa	50	70	85	50	70	85	
Pressione finale	mbar ass.	500	300	150	500	300	150	
Pressione di alimentazione	bar	3	4	5	3	4	5	
Pressione di alimentazione ottimale	bar			5			5	
Consumo di aria	NI/s	0.5	0.6	0.8	0.8	1.0	1.3	
Max quantità d'aria soffiata a 5 bar	l/min			205			205	
Posizione elettrovalvola d'alimentazione	NO/NC			NO			NO	
Posizione elettrovalvola d'espulsione	NC			NC			NC	
Tensione d'alimentazione	V			24 DC			24 DC	
Assorbimento elettrico	W			1 x 2			1 x 2	
Uscita vacuostato				PNP			PNP	
Grado di protezione	IP			65			65	
Temperatura di utilizzo	°C			-10 / +60			-10 / +60	
Livello di rumorosità alla pressione di alimentazione ottimale	dB(A)			66			70	
Peso	Kg			0.666			0.670	
G	Ø			G1/4"			G3/8"	


- N.B. Per ordinare il generatore: con elettrovalvola d'alimentazione NC, indicare il codice MVG .. NC; senza vacuostato digitale, indicare il codice MVG .. SV;
 - senza elettrovalvola d'espulsione, indicare il codice MVG .. SC.
- N.B. Tutti i valori di vuoto indicati in tabella sono validi alla normale pressione atmosferica di 1013 mbar ed ottenuti con una pressione di alimentazione costante.

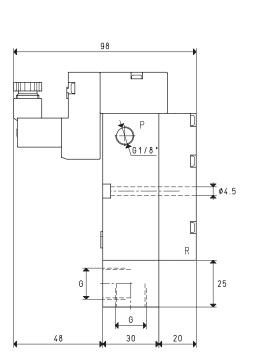
 L'alimentazione dei generatori di vuoto, deve essere effettuata con aria compressa non lubrificata, filtrazione 5 micron, secondo norma ISO 8573-1 classe 4.

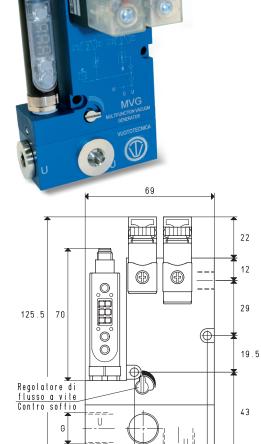

Portata d'aria (NI/s) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale



Generatore.	Press. alim.	Consumo aria		Portata d'aria (NI/s) ai diversi gradi di vuoto (-KPa) alla pressione di alimentazione ottimale					Vuoto max			
art.	bar	NI/s	0	10	20	30	40	50	60	70	80	-KPa
MVG 3	5.0	0.8	0.89	0.69	0.41	0.23	0.18	0.12	0.10	0.07	0.03	85
MVG 7	5.0	1.3	1.83	1.44	1.11	0.63	0.41	0.25	0.16	0.11	0.05	85

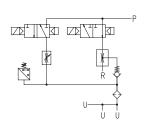
Tempi di evacuazione (ms/l=s/m³) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale




Generatore.	Press. alim.	Consumo aria	Tempi di evacuazione (ms/l = s/m³) ai diversi gradi di vuoto (-KPa) alla pressione di alimentazione ottimale					Vuoto max				
art.	bar	NI/s	10	20	30	40	50	60	70	80	85	-KPa
MVG 3	5.0	0.8	119	274	552	1088	1845	2694	4499	8009	11373	85
MVG 7	5.0	1.3	58	133	268	529	897	1310	2188	3895	5531	85

ACCESSORI E RICAMBI A RICHIESTA

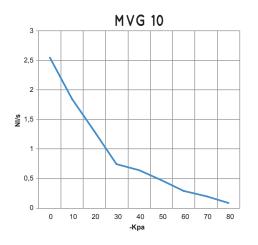
ACCESSORI E RICAMBI A RICHIESTA			
Art.		MVG 3	MVG 7
Kit di guarnizioni e valvole a lamella	art.	00 KIT MVG 3	00 KIT MVG 7
Silenziatore di scarico	art.	00 15 15	0
Cavo di collegamento elettrico, con connettore assiale, per vacuostato	art.	00 12 20	0
Cavo di collegamento elettrico, con connettore radiale, per vacuostato	art.	00 12 2	1
Set di cavi di collegamento elettrico, con dispositivo di risparmio energetico integrato NO e connettori	art.	00 15 20)2
Set di cavi di collegamento elettrico, con dispositivo di risparmio energetico integrato NC e connettori	art.	00 15 20	13
Vacuostato digitale	art.	12 10 10	-
Elettrovalvola d'alimentazione NO	art.	00 15 43	36
Elettrovalvola d'alimentazione NC	art.	00 15 43	37

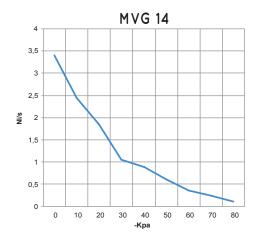


31

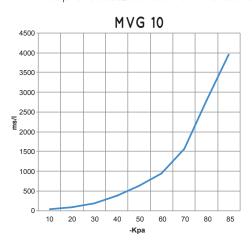
39.5

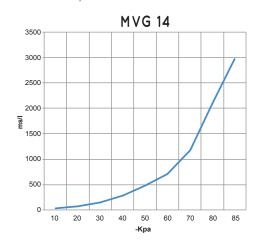
25.5


P=CONNESSIONE ARIA COMPRESS	A R=SCARIC	O U=0	CONNESSIO	ONE VUOTO					
Art.			MVG 10		MVG 14				
Quantità di aria aspirata	m³/h	7.7	8.4	9.2	10.2	11.2	12.2		
Massimo grado di vuoto	-KPa	50	70	85	50	70	85		
Pressione finale	mbar ass.	500	300	150	500	300	150		
Pressione di alimentazione	bar	3	4	5	3	4	5		
Pressione di alimentazione ottimale	bar			5			5		
Consumo di aria	NI/s	0.9	1.3	1.7	1.3	1.7	2.1		
Max quantità d'aria soffiata a 5 bar	l/min			205			205		
Posizione elettrovalvola d'alimentazione	NO/NC			NO			NO		
Posizione elettrovalvola d'espulsione	NC			NC			NC		
Tensione d'alimentazione	V			24 DC			24 DC		
Assorbimento elettrico	W			1 x 2			1 x 2		
Uscita vacuostato				PNP			PNP		
Grado di protezione	IP			65			65		
Temperatura di utilizzo	°C			-10 / +60			-10 / +60		
Livello di rumorosità alla pressione di alimentazione ottimale	dB(A)			62			70		
Peso	Kg			0.716			0.720		
G	Ø			G3/8"			G3/8"		


- N.B. Per ordinare il generatore: con elettrovalvola d'alimentazione NC, indicare il codice MVG .. NC; senza vacuostato digitale, indicare il codice MVG .. SV;
 - senza elettrovalvola d'espulsione, indicare il codice MVG \dots SC.
- N.B. Tutti i valori di vuoto indicati in tabella sono validi alla normale pressione atmosferica di 1013 mbar ed ottenuti con una pressione di alimentazione costante.

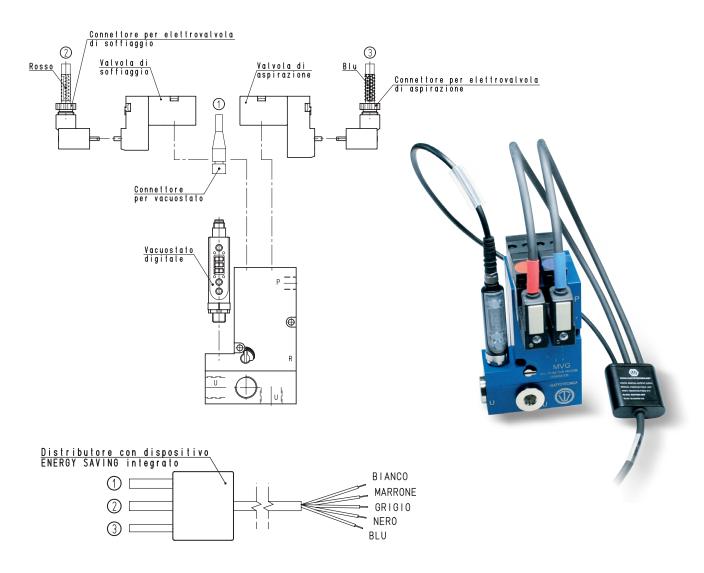
 L'alimentazione dei generatori di vuoto, deve essere effettuata con aria compressa non lubrificata, filtrazione 5 micron, secondo norma ISO 8573-1 classe 4.


Portata d'aria (NI/s) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale

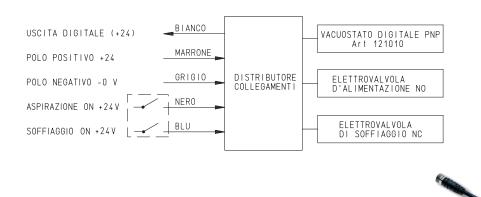


Generatore.	Press. alim.	Consumo aria		Portata d'aria (NI/s) ai diversi gradi di vuoto (-KPa) alla pressione di alimentazione ottimale					Vuoto max			
art.	bar	NI/s	0	10	20	30	40	50	60	70	80	-KPa
MVG 10	5.0	1.7	2.55	1.85	1.30	0.75	0.64	0.48	0.30	0.20	0.09	85
MVG 14	5.0	2.1	3.40	2.45	1.84	1.05	0.88	0.61	0.36	0.24	0.11	85

Tempi di evacuazione (ms/l=s/m³) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale

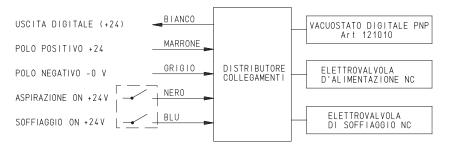

Generatore.	Press. alim.	Consumo aria	Tempi di evacuazione (ms/l = s/m³) ai diversi gradi di vuoto (-KPa) alla pressione di alimentazione ottimale					Vuoto max				
art.	bar	NI/s	10	20	30	40	50	60	70	80	85	-KPa
MVG 10	5.0	1.7	41	95	192	379	642	938	1567	2790	3962	85
MVG 14	5.0	2.1	31	71	144	284	482	704	1175	2092	2971	85

ACCESSORI E RICAMBI A RICHIESTA


Art.		MVG 10	MVG 14
Kit di guarnizioni e valvole a lamella	art.	00 KIT MVG 10	00 KIT MVG 14
Silenziatore di scarico	art.	N°2 00 15	5 150
Cavo di collegamento elettrico, con connettore assiale, per vacuostato	art.	00 12 2	20
Cavo di collegamento elettrico, con connettore radiale, per vacuostato	art.	00 12 2	21
Set di cavi di collegamento elettrico, con dispositivo di risparmio energetico integrato NO e connettori	art.	00 15 2	02
Set di cavi di collegamento elettrico, con dispositivo di risparmio energetico integrato NC e connettori	art.	00 15 2	03
Vacuostato digitale	art.	12 10	10
Elettrovalvola d'alimentazione NO	art.	00 15 4	36
Elettrovalvola d'alimentazione NC	art.	00 15 4	.37

ACCESSORI E RICAMBI PER GENERATORI DI VUOTO MULTISTADIO E MULTIFUNZIONE, SERIE MVG

Set di cavi con energy saving integrato



Art.	Descrizione
00 15 202	Set di cavi con dispositivo, energy saving integrato, per l'allacciamento a:
	- Vacuostato digitale
	- Microelettrovalvola d'alimentazione NO
	- Microelettrovalvola di espulsione NC
	Lunghezza cavo= 5 mt.

ACCESSORI E RICAMBI PER GENERATORI DI VUOTO MULTISTADIO E MULTIFUNZIONE, SERIE MVG

Set di cavi con energy saving integrato

Art.	Descrizione
00 15 203	Set di cavi con dispositivo, energy saving integrato, per l'allacciamento a: - Vacuostato digitale - Microelettrovalvola d'alimentazione NC - Microelettrovalvola di espulsione NC Lunghezza cavo= 5 mt

Connettore

Art.	Descrizione
00 15 157	Connettore con LED per le microelettrovalvole

Cavo con connettore assiale

Art.	Descrizione
00 12 20	Cavo di collegamento elettrico con connettore assiale M8 - 4 pin per vacuostato digitale lunghezza 5 mt

Cavo con connettore radiale

Art.	Descrizione
00 12 21	Cavo di collegamento elettrico con connettore radiale M8 - 4 pin per vacuostato digitale lunghezza 5 mt

ACCESSORI E RICAMBI PER GENERATORI DI VUOTO MULTISTADIO E MULTIFUNZIONE, SERIE MVG

Microelettrovalvola d'alimentazione NO

Art.	Descrizione
00 15 436	Microelettrovalvola NO con bobina elettrica a basso assorbimento integrata e interfaccia

Microelettrovalvola d'alimentazione e di soffiaggio NC

Art.	Descrizione
00 15 437	Microelettrovalvola NC con bobina elettrica a basso assorbimento integrata e interfaccia

Piastrina sostitutiva della microelettrovalvola di soffiaggio

Art.	Descrizione
00 15 178	Piastrina sostitutiva della microelettrovalvola di soffiaggio

Vacuostato digitale

Art.	Descrizione
12 10 10	Vacuostato digitale

8

GENERATORI DI VUOTO MULTISTADIO, MULTIFUNZIONE E MODULARI SERIE GVMM - GENERALITÀ

I generatori di vuoto multifunzione modulari sono vere e proprie unità di vuoto autonome, in grado di asservire completamente un sistema di presa a depressione.

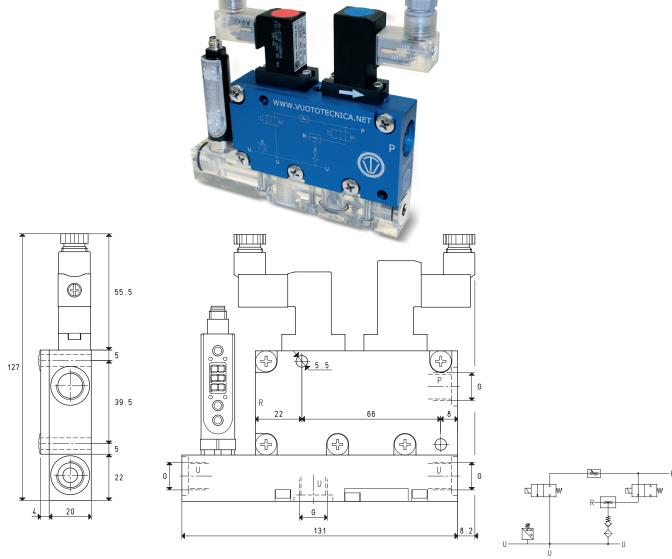
Di spessore e peso ridottissimi, in rapporto alla loro capacità d'aspirazione, sono

Di spessore e peso ridottissimi, in rapporto alla loro capacità d'aspirazione, sono stati progettati per essere assemblati ad uno o più moduli intermedi MI, mediante viti; l'originale sistema di connessioni interne per l'alimentazione dell'aria compressa consente di comunicare tra loro, senza l'impiego di collettori esterni.

Il sistema modulare così concepito consente di aumentare il numero delle unità di vuoto autonome, in funzione delle proprie esigenze. Si possono, infatti, ordinare il generatore di vuoto multifunzione ed i moduli intermedi, nel numero e con le portate desiderate, già assemblati tra loro, oppure, assemblare uno o più moduli intermedi al generatore GVMM già installato sull'automatismo, senza apportare modifiche sostanziali. I generatori di vuoto GVMM sono costituiti da un monoblocco d'alluminio anodizzato con coperchio, all'interno del quale sono assemblati gli eiettori multipli silenziati e ricavate le camere di vuoto e le connessioni per l'alimentazione dell'aria compressa.

Esternamente sono invece assemblati:

- Una microelettrovalvola per l'alimentazione dell'aria compressa al generatore.
- Una microelettrovalvola per il soffiaggio dell'aria compressa d'espulsione.
- Un regolatore di flusso a vite per il dosaggio dell'aria d'espulsione.
- Un vacuostato digitale con display e led di segnalazione delle commutazioni, idoneo a gestire l'alimentazione dell'aria compressa e fornire un segnale per l'avvio ciclo in sicurezza.
- Un distributore in alluminio anodizzato o in plexiglas trasparente, con le connessioni per il vuoto, con integrati un filtro d'aspirazione facilmente ispezionabile ed una valvola di ritegno, per il mantenimento del vuoto all'utilizzo in mancanza di corrente elettrica o aria compressa.

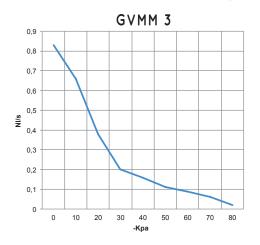

Attivando la microelettrovalvola d'alimentazione dell'aria compressa, il generatore crea vuoto all'utilizzo; al raggiungimento del valore massimo prestabilito, il vacuostato, intervenendo sulla bobina elettrica della microelettrovalvola, interrompe l'alimentazione dell'aria e la ripristina quando il valore di vuoto scende al di sotto del valore minimo. Questa modulazione, oltre a mantenere il grado di vuoto entro i valori di sicurezza prestabiliti (isteresi), consente un notevole risparmio di aria compressa. Un secondo segnale del vacuostato, anch'esso regolabile e indipendente dal primo, può essere impiegato per consentire l'avvio del ciclo quando il grado di vuoto raggiunto è quello idoneo all'utilizzo. Terminato il ciclo di lavoro, si disattiva la microelettrovalvola di alimentazione dell'aria al generatore e, contemporaneamente, si attiva la microelettrovalvola d'espulsione per il ripristino rapido della pressione atmosferica all'utilizzo.

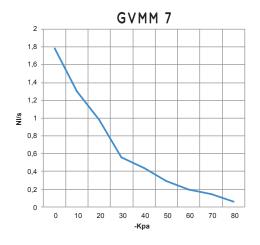
I generatori di vuoto multifunzione modulari GVMM, possono essere installati in qualsiasi posizione e sono adatti per l'asservimento di sistemi di presa a ventose, per movimentare lamiere, vetri, marmi, ceramiche, plastica, cartoni, legno, ecc. ed in particolare per il settore della robotica industriale, dove sono sempre più richiesti apparecchi con ottime prestazioni e più prese di vuoto autonome per l'asservimento di più utenze, ma con dimensioni e pesi molto contenuti.

GENERATORI DI VUOTO MULTISTADIO, MULTIFUNZIONE E MODULARI, GVMM 3 e GVMM 7

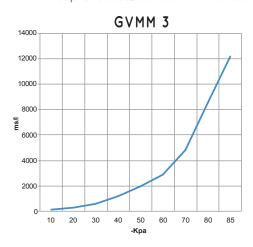
P=CONNESSIONE ARIA COMPRESS	A R=SC	CARICO	U=(CONNESSI	ONE VUOTO						
Art.				GVMM 3			GVMM 7				
Quantità di aria aspirata	m³/h		2.6	2.8	3.0		5.5	6.0	6.4		
Massimo grado di vuoto	-KPa		64	85	85		60	80	85		
Pressione finale	mbar ass.		360	150	150	4	100	200	150		
Pressione di alimentazione	bar		3	4	5		3	4	5		
Pressione di alimentazione ottimale	bar				5				5		
Consumo di aria	NI/s		0.6	0.7	0.8		0.9	1.1	1.3		
Max quantità d'aria soffiata a 5 bar	l/min				128				128		
Posizione elettrovalvola d'alimentazione	NO/NC				NO				NO		
Assorbimento elettrico	W				2				2		
Posizione elettrovalvola d'espulsione	NC				NC				NC		
Assorbimento elettrico	W				4				4		
Tensione d'alimentazione	V				24DC				24DC		
Uscita vacuostato					PNP				PNP		
Grado di protezione	IP				65				65		
Temperatura di utilizzo	°C				-10 / +60				-10 / +60		
Livello di rumorosità alla pressione di alimentazione ottimale	dB(A)				66				70		
Peso	g				420				420		
G	Ø				G1/4"				G1/4"		

N.B. Per ordinare il generatore: senza vacuostato digitale, indicare il codice GVMM .. SV;


con elettrovalvola d'alimentazione NC, indicare il codice GVMM .. NC;


con collettore in alluminio, indicare il codice GVMM .. AL.

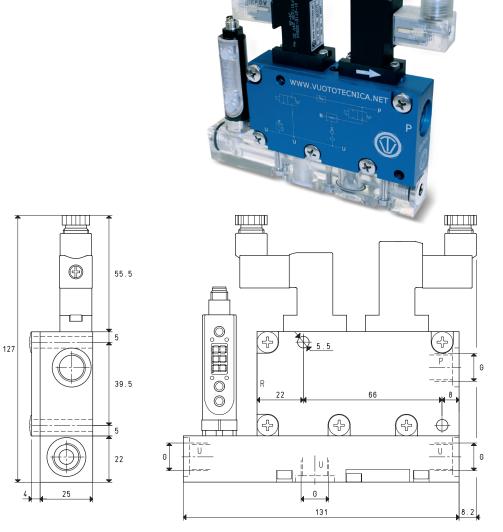
GENERATORI DI VUOTO MULTISTADIO, MULTIFUNZIONE E MODULARI, GVMM 3 e GVMM 7

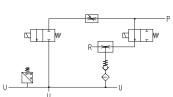

Portata d'aria (NI/s) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale



Generatore.	Press. alim.	Consumo aria		Vuoto max								
art.	bar	NI/s	0	10	20	30	40	50	60	70	80	-KPa
GVMM 3	5.0	0.8	0.83	0.66	0.38	0.20	0.16	0.11	0.09	0.06	0.02	85
GVMM 7	5.0	1.3	1.78	1.30	0.98	0.56	0.44	0.29	0.20	0.14	0.06	85

Tempi di evacuazione (ms/l=s/m³) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale


Generatore.	Press. alim.	Consumo aria	Tempi di evacuazione (ms/l = s/m³) ai diversi gradi di vuoto (-KPa) alla pressione di alimentazione ottimale								Pa)	Vuoto max
art.	Dai	NI/s	10	20	30	40	50	60	70	80	85	-KPa
GVMM 3	5.0	0.8	128	294	592	1167	1978	2889	4824	8588	12195	85
GVMM 7	5.0	1.3	59	137	275	543	921	1344	2245	3997	5676	85

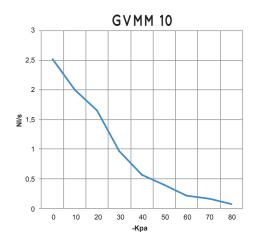

ACCESSORI E RICAMBI A RICHIESTA

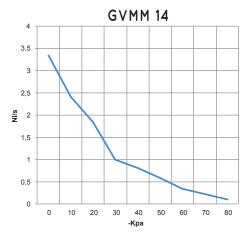
Art.		GVMM 3	GVMM 7
Kit di guarnizioni e valvole a lamella	art.	00 KIT GVMM 3	00 KIT GVMM 7
Silenziatore di scarico	art.	00 15 1	50
Cavo di collegamento elettrico, con connettore assiale, per vacuostato	art.	00 12 2	0
Cavo di collegamento elettrico, con connettore radiale, per vacuostato	art.	00 12 2	.1
Set di cavi di collegamento elettrico, con dispositivo di risparmio energetico integrato NO e connettori	art.	00 15 20	02
Set di cavi di collegamento elettrico, con dispositivo di risparmio energetico integrato NC e connettori	art.	00 15 20	03
Vacuostato digitale	art.	12 10 1	0
Elettrovalvola d'alimentazione NO	art.	00 15 17	76
Elettrovalvola d'alimentazione NC	art.	00 15 17	75

GENERATORI DI VUOTO MULTISTADIO, MULTIFUNZIONE E MODULARI, GVMM 10 e GVMM 14

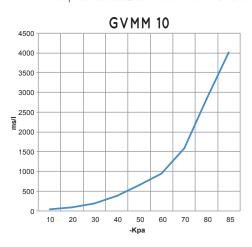
P=CONNESSIONE ARIA COMPRESS	A R=SCA	RICO	U=C	ONNESSI	ONE VUOTO						
Art.				GVMM 10			GVMM 14				
Quantità di aria aspirata	m³/h	7.	.5	8.3	9.1	10.1	11.1	12.1			
Massimo grado di vuoto	-KPa	6	0	80	85	60	80	85			
Pressione finale	mbar ass.	40	00	200	150	400	200	150			
Pressione di alimentazione	bar	3	3	4	5	3	4	5			
Pressione di alimentazione ottimale	bar				5			5			
Consumo di aria	NI/s	1.	.1	1.4	1.7	1.4	1.7	2.1			
Max quantità d'aria soffiata a 5 bar	l/min				128			128			
Posizione elettrovalvola d'alimentazione	NO/NC				NO			NO			
Assorbimento elettrico	W				2			2			
Posizione elettrovalvola d'espulsione	NC				NC			NC			
Assorbimento elettrico	W				4			4			
Tensione d'alimentazione	V				24DC			24DC			
Uscita vacuostato					PNP			PNP			
Grado di protezione	IP				65			65			
Temperatura di utilizzo	°C				-10 / +60			-10 / +60			
Livello di rumorosità alla pressione di alimentazione ottimale	dB(A)				70			72			
Peso	g				460			460			
G	Ø				G1/4"			G1/4"			

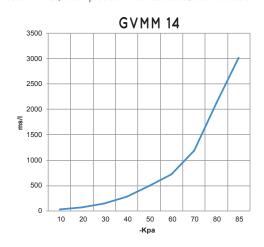
N.B. Per ordinare il generatore: senza vacuostato digitale, indicare il codice GVMM .. SV;


con elettrovalvola d'alimentazione NC, indicare il codice GVMM .. NC;


con collettore in alluminio, indicare il codice GVMM .. AL.

GENERATORI DI VUOTO MULTISTADIO, MULTIFUNZIONE E MODULARI, GVMM 10 e GVMM 14


Portata d'aria (NI/s) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale



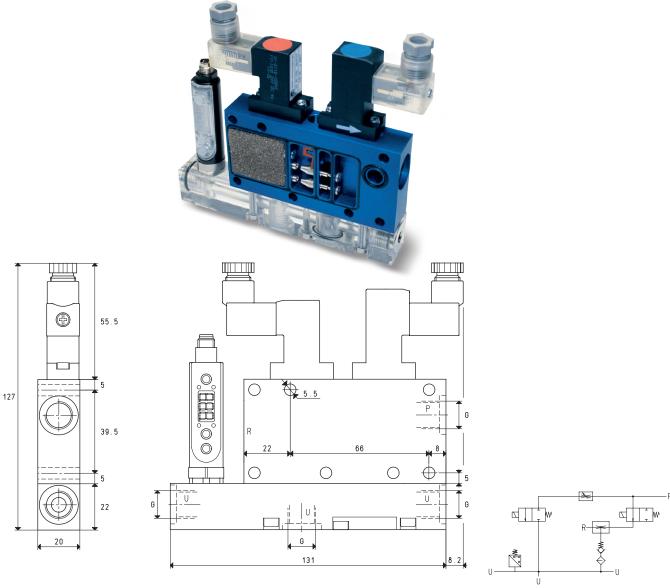
Generatore.	Press. alim.	Consumo aria		Portata d'aria (NI/s) ai diversi gradi di vuoto (-KPa) alla pressione di alimentazione ottimale								Vuoto max
art.	bar	NI/s	0	10	20	30	40	50	60	70	80	-KPa
GVMM 10	5.0	1.7	2.52	2.00	1.66	0.97	0.56	0.40	0.22	0.16	0.07	85
GVMM 14	5.0	2.1	3.35	2.42	1.84	0.99	0.80	0.58	0.34	0.22	0.10	85

Tempi di evacuazione (ms/l=s/m³) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale

Generatore.	Press. alim.	Consumo aria	Tempi di evacuazione (ms/l = s/m³) ai diversi gradi di vuoto (-KPa) alla pressione di alimentazione ottimale								Pa)	Vuoto max
art.	bar	NI/s	10	20	30	40	50	60	70	80	85	-KPa
GVMM 10	5.0	1.7	42	97	195	384	651	951	1589	2828	4016	85
GVMM 14	5.0	2.1	31	72	146	288	489	714	1193	2124	3016	85

ACCESSORI E RICAMBI A RICHIESTA

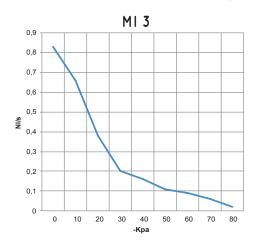
Art.		GVMM 10	GVMM 14
Kit di guarnizioni e valvole a lamella	art.	00 KIT GVMM 10	00 KIT GVMM 14
Silenziatore di scarico	art.	N°2 00 15	150
Cavo di collegamento elettrico, con connettore assiale, per vacuostato	art.	00 12 2	0
Cavo di collegamento elettrico, con connettore radiale, per vacuostato	art.	00 12 2	1
Set di cavi di collegamento elettrico, con dispositivo di risparmio energetico integrato NO e connettori	art.	00 15 20)2
Set di cavi di collegamento elettrico, con dispositivo di risparmio energetico integrato NC e connettori	art.	00 15 20	03
Vacuostato digitale	art.	12 10 1	0
Elettrovalvola d'alimentazione NO	art.	00 15 17	76
Elettrovalvola d'alimentazione NC	art.	00 15 17	75

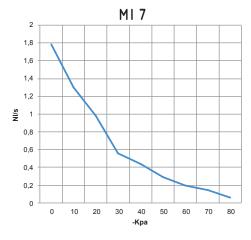

MODULI DI VUOTO INTERMEDI, MULTISTADIO, MULTIFUNZIONE E MODULARI, SERIE MI - GENERALITÀ

I moduli intermedi sono dei generatori di vuoto multistadio e multifunzione non autonomi, da assemblare ai generatori della serie GVMM

Di spessore e peso ridottissimi in rapporto alla loro capacità d'aspirazione, sono stati progettati per essere racchiusi tra il coperchio e la base del generatore di vuoto GVMM e fissati a quest'ultimo mediante viti; le connessioni interne per l'alimentazione dell'aria compressa consentono di comunicare tra loro e con il generatore di base, senza l'impiego di collettori esterni. Così assemblati, ogni modulo diventa una unità di vuoto autonoma, in grado di asservire completamente un sistema di presa a depressione. Si possono ordinare nel numero e con le portate desiderate, già assemblati al generatore di vuoto multifunzione GVMM, oppure separatamente, da assemblare al generatore GVMM precedentemente installato sull'automatismo; in questo caso è bene richiedere il kit di viti adequato al numero di moduli da fissare insieme. I moduli di vuoto intermedi MI sono costituiti dagli stessi elementi che compongono i generatori GVMM, ad esclusione del coperchio di chiusura. Il loro funzionamento ed il loro impiego sono gli stessi del generatore di vuoto multifunzione GVMM, al quale vengono assemblati.

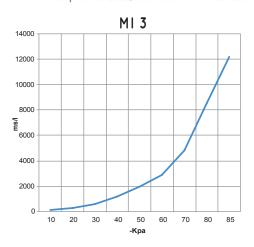
P=CONNESSIONE ARIA COMPRESS	A R=SC	ARICO	U=C	ONNESSI	ONE VUOTO			
Art.				MI 3			МІ 7	
Quantità di aria aspirata	m³/h		2.6	2.8	3.0	5.5	6.0	6.4
Massimo grado di vuoto	-KPa		64	85	85	60	80	85
Pressione finale	mbar ass.		360	150	150	400	200	150
Pressione di alimentazione	bar		3	4	5	3	4	5
Pressione di alimentazione ottimale	bar				5			5
Consumo di aria	NI/s		0.6	0.7	0.8	0.9	1.1	1.3
Max quantità d'aria soffiata a 5 bar	l/min				128			128
Posizione elettrovalvola d'alimentazione	NO/NC				NO			NO
Assorbimento elettrico	W				2			2
Posizione elettrovalvola d'espulsione	NC				NC			NC
Assorbimento elettrico	W				4			4
Tensione d'alimentazione	V				24DC			24DC
Uscita vacuostato					PNP			PNP
Grado di protezione	IP				65			65
Temperatura di utilizzo	°C				-10 / +60			-10 / +60
Livello di rumorosità alla pressione di alimentazione ottimale	dB(A)				66			70
Peso	g				380			380
G	Ø				G1/4"			G1/4"

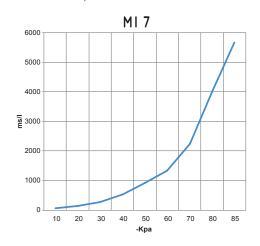

N.B. Per ordinare il generatore: senza vacuostato digitale, indicare il codice MI .. SV;


con elettrovalvola d'alimentazione NC, indicare il codice MI .. NC;

con collettore in alluminio, indicare il codice MI .. AL.

Sono disponibili i disegni 3D sul sito vuototecnica.net

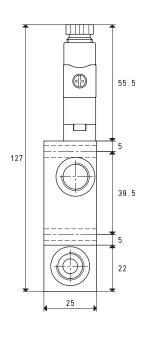

Portata d'aria (NI/s) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale

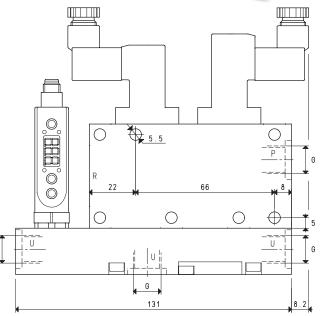


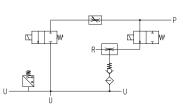
Generatore.	Press. alim.	Consumo aria				ia (NI/s) ai diversi gradi di vuoto (-KPa) essione di alimentazione ottimale						Vuoto max
art.	bar	NI/s	0	10	20	30	40	50	60	70	80	-KPa
MI 3	5.0	0.8	0.83	0.66	0.38	0.20	0.16	0.11	0.09	0.06	0.02	85
MI 7	5.0	1.3	1.78	1.30	0.98	0.56	0.44	0.29	0.20	0.14	0.06	85

Tempi di evacuazione (ms/l=s/m³) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale

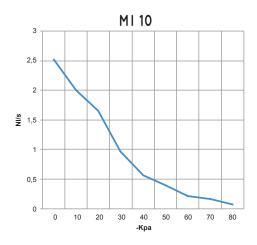
Generatore.	Press. alim.	Consumo aria	Tempi di evacuazione (ms/l = s/m³) ai diversi gradi di vuoto (-KPa) alla pressione di alimentazione ottimale				Pa)	Vuoto max				
art.	bar	NI/s	10	20	30	40	50	60	70	80	85	-KPa
MI 3	5.0	0.8	128	294	592	1167	1978	2889	4824	8588	12195	85
MI 7	5.0	1.3	59	137	275	543	921	1344	2245	3997	5676	85

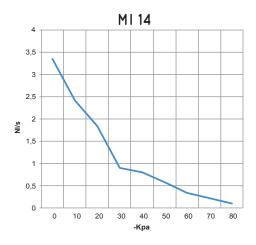

ACCESSORI E RICAMBI A RICHIESTA


Art.		MI 3		МІ 7
Kit di guarnizioni e valvole a lamella	art.	00 KIT MI 3		00 KIT MI 7
Silenziatore di scarico	art.		00 15 150	
Cavo di collegamento elettrico, con connettore assiale, per vacuostato	art.		00 12 20	
Cavo di collegamento elettrico, con connettore radiale, per vacuostato	art.		00 12 21	
Set di cavi di collegamento elettrico, con dispositivo di risparmio energetico integrato NO e connettori	art.		00 15 202	
Set di cavi di collegamento elettrico, con dispositivo di risparmio energetico integrato NC e connettori	art.		00 15 203	
Vacuostato digitale	art.		12 10 10	
Elettrovalvola d'alimentazione NO	art.		00 15 176	
Elettrovalvola d'alimentazione NC	art.		00 15 175	

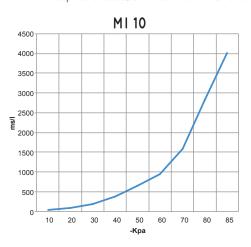

8

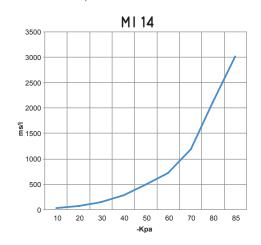
P=CONNESSIONE ARIA COMPRESS	A R=SCA	ARICO	U=C	ONNESSI	OTOUV 3NC			
Art.				MI 10			MI 14	
Quantità di aria aspirata	m³/h	7	7.5	8.3	9.1	10.1	11.1	12.1
Massimo grado di vuoto	-KPa	6	50	80	85	60	80	85
Pressione finale	mbar ass.	4	.00	200	150	400	200	150
Pressione finale ottimale	mbar ass.				150			150
Pressione di alimentazione	bar		3	4	5	3	4	5
Consumo di aria	NI/s	1	.1	1.4	1.7	1.4	1.7	2.1
Max quantità d'aria soffiata a 5 bar	l/min				128			128
Posizione elettrovalvola d'alimentazione	NO/NC				NO			NO
Assorbimento elettrico	W				2			2
Posizione elettrovalvola d'espulsione	NC				NC			NC
Assorbimento elettrico	W				4			4
Tensione d'alimentazione	V				24DC			24DC
Uscita vacuostato					PNP			PNP
Grado di protezione	IP				65			65
Temperatura di utilizzo	°C				-10 / +60			-10 / +60
Livello di rumorosità alla pressione di alimentazione ottimale	dB(A)				70			72
Peso	g				410			410
G	Ø				G1/4"			G1/4"


N.B. Per ordinare il generatore: senza vacuostato digitale, indicare il codice MI .. SV;


con elettrovalvola d'alimentazione NC, indicare il codice MI .. NC;

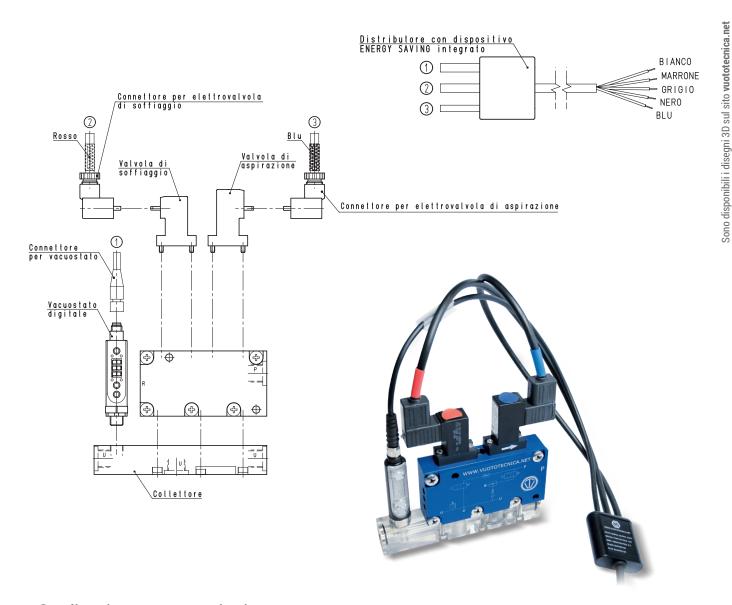
con collettore in alluminio, indicare il codice MI .. AL.


Portata d'aria (NI/s) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale



Generatore.	Press. alim.	Consumo aria		Por	ortata d'aria (NI/s) ai diversi gradi di vuoto (-KPa) alla pressione di alimentazione ottimale							Vuoto max
art.	bar	NI/s	0	10	20	30	40	50	60	70	80	-KPa
MI 10	5.0	1.7	2.52	2.00	1.66	0.97	0.56	0.40	0.22	0.16	0.07	85
MI 14	5.0	2.1	3.35	2.42	1.84	0.99	0.80	0.58	0.34	0.22	0.10	85

Tempi di evacuazione (ms/l=s/m³) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale


Generatore.	Press. alim.	Consumo aria	Tempi di evacuazione (ms/l = s/m³) ai diversi gradi di vuoto (-KPa) alla pressione di alimentazione ottimale				Pa)	Vuoto max				
art.	bar	NI/s	10	20	30	40	50	60	70	80	85	-KPa
MI 10	5.0	1.7	42	97	195	384	651	951	1589	2828	4016	85
MI 14	5.0	2.1	31	72	146	288	489	714	1193	2124	3016	85

ACCESSORI E RICAMBI A RICHIESTA

Art.		MI 10	MI 14
Kit di guarnizioni e valvole a lamella	art.	00 KIT MI 10	00 KIT MI 14
Silenziatore di scarico	art.	N'	°2 00 15 150
Cavo di collegamento elettrico, con connettore assiale, per vacuostato	art.		00 12 20
Cavo di collegamento elettrico, con connettore radiale, per vacuostato	art.		00 12 21
Set di cavi di collegamento elettrico, con dispositivo di risparmio energetico integrato NO e connettori	art.		00 15 202
Set di cavi di collegamento elettrico, con dispositivo di risparmio energetico integrato NC e connettori	art.		00 15 203
Vacuostato digitale	art.		12 10 10
Elettrovalvola d'alimentazione NO	art.		00 15 176
Elettrovalvola d'alimentazione NC	art.		00 15 175

8

Set di cavi con energy saving integrato

- Microelettrovalvola di espulsione NC Lunghezza cavo = 5 mt.

Set di cavi con energy saving integrato

Art.	Descrizione
00 15 203	Set di cavi con dispositivo energy saving integrato, per l'allacciamento a: - Vacuostato digitale - Microelettrovalvola d'alimentazione NC - Microelettrovalvola di espulsione NC Lunghezza cavo= 5 mt.

Connettore

Art.	Descrizione
00 15 157	Connettore con LED per le microelettrovalvole

Cavo con connettore assiale

Art.	Descrizione
00 12 20	Cavo di collegamento elettrico con connettore assiale M8 - 4 pin per vacuostato digitale lunghezza 5 mt

Cavo con connettore radiale

Art.	Descrizione			
00 12 21	Cavo di collegamento elettrico con connettore radiale M8 - 4 pin per vacuostato digitale lunghezza 5 mt			

Vacuostato digitale

Art.	Descrizione
12 10 10	Vacuostato digitale

Microelettrovalvola d'alimentazione NO

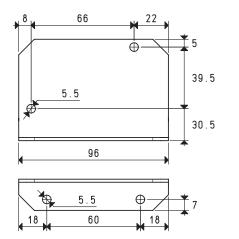
Art.	Descrizione		
00 15 176	Microelettrovalvola d'alimentazione NO - h = 43 mm		

Microelettrovalvola d'alimentazione e di soffiaggio NC

Art.	Descrizione	
00 15 175	Microelettrovalvola d'alimentazione e di sffiaggio NC - h = 37,5 mm	

Collettori in plexiglas

Art.	Descrizione		
00 15 171	Collettore d'aspirazione in plexiglas per GVMM - MI 3/7		
00 15 188	Collettore d'aspirazione in plexiglas per GVMM - MI 10/14		



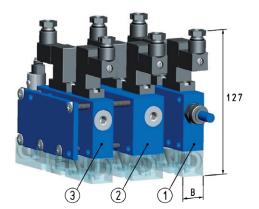
Collettori in alluminio

Art.	Descrizione			
00 15 174	Collettore d'aspirazione in alluminio per GVMM - MI 3/7			
00 15 187	Collettore d'aspirazione in alluminio per GVMM - MI 10/14			

Supporto

	2	+	
2			
75			
3		<u></u>	
		20	

Art.	Descrizione
00 15 306	Supporto di fissaggio a L, in lamiera zincata



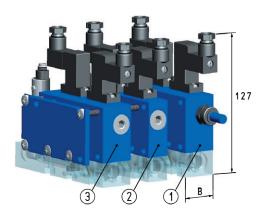
COMPOSIZIONE DEI SISTEMI DI VUOTO MODULARI

L'assieme di un generatore di vuoto multifunzione GVMM con uno o più moduli intermedi forma un sistema di vuoto modulare, caratterizzato dalla compattezza, dalla leggerezza e dalle ridotte dimensioni d'ingombro.

Si possono assemblare di serie fino a 6 unità di vuoto, ma con l'impiego di barre filettate al posto delle viti, è possibile assemblarne fra loro molte di più.

ESEMPIO DI COMPOSIZIONE 1

N°	Art.	В
1	GVMM 3 - 7	20
2	MI 10 - 14	25
3	MI 3 - 7	20


Lunghezza totale L= 65 Kit di viti necessario: Art. 00 KIT GVMM 02

Esempio di ordinazione:

n°1 Generatore GVMM 3

- n°1 Modulo intermedio MI 10
- n°1 Modulo intermedio MI 3
- n°1 Kit di viti inox 00 KIT GVMM 02

ESEMPIO DI COMPOSIZIONE 2

N°	Art.	В
1	GVMM 10 - 14	25
2	MI 3 - 7	20
3	MI 10 - 14	25

Lunghezza totale L=70

Kit di viti necessario: Art. 00 KIT GVMM 03

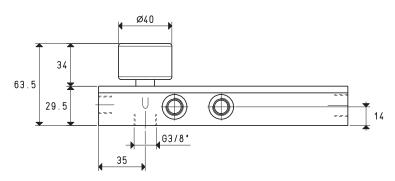
Esempio di ordinazione:

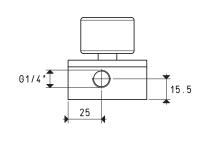
- n°1 Generatore GVMM 10
- n°1 Modulo intermedio MI 3
- n°1 Modulo intermedio MI 10
- n°1 Kit di viti inox 00 KIT GVMM 03

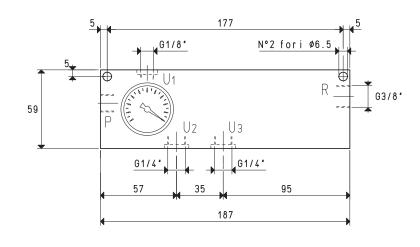
KIT DI VITI M5 IN ACCIAIO INOX

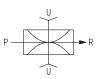
Art.	L
00 KIT GVMM 01	45 - 50
00 KIT GVMM 02	60 - 65
00 KIT GVMM 03	70 - 75
00 KIT GVMM 04	80 - 85
00 KIT GVMM 05	90 - 95
00 KIT GVMM 06	100 - 105
00 KIT GVMM 07	110 - 115
00 KIT GVMM 08	120 - 125
00 KIT GVMM 09	130 - 135
00 KIT GVMM 12	140 - 145
00 KIT GVMM 11	150 - 155

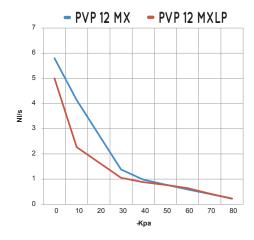
8


GENERATORI DI VUOTO MULTISTADIO PVP 12 MX / MXLP e PVP 25 MX / MXLP



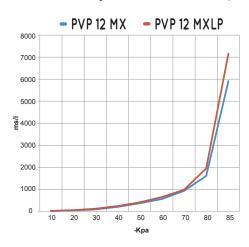

Questa serie di generatori di vuoto ad eiettori multipli,è caratterizzata da una maggiore capacità d'aspirazione, a parità di consumo d'aria compressa, dei modelli monostadio.


La pressione d'alimentazione è compresa tra $4\div6$ bar, per gli articoli MX e tra $1\div3$ bar, per gli MXLP. Le portate vanno da 10,5 a 31 m³/h. Sono interamente realizzati in alluminio anodizzato, con gli eiettori e la viteria in acciaio inox. Le guarnizioni in EPDM, le valvole a lamella in silicone ed il vuotometro, sono di serie. Sono dotati di connessioni d'aspirazione supplementari, per ulteriori punti d'utilizzo o per strumenti di controllo. Le connessioni di scarico dell'aria aspirata, sono filettate per consentire l'installazione, a richiesta, dei silenziatori "free-flow" SSX, ad alto abbattimento sonoro.


P=CONNESSIONE ARIA COMPRESSA	R=SCARICO	U=CONNESSIONE VUOTO	U 1-2-3=CONNESSIONE	E VUOTO SUPPLEMENTARE

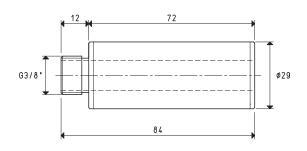
Art.			PVP 12 MX		P	PVP 12 MXLP					
Quantità di aria aspirata	m³/h	16.0	18.0	21.0	10.5	15.5	18.0				
Massimo grado di vuoto	-KPa	65	85	90	30	61	86				
Pressione finale	mbar ass.	350	150	100	700	390	140				
Pressione di alimentazione	bar	4	5	6	1	2	3				
Pressione di alimentazione ottimale	bar			6			3				
Consumo di aria	NI/s	1.0	1.3	1.5	1.1	1.6	2.3				
Temperatura di utilizzo	°C			-20 / +100			-20 / +100				
Livello di rumorosità alla pressione di alimentazione ottimale	dB(A)			65			79				
Peso	g			660			660				

Ricambi		PVP 12 MX / MXLP
Kit di guarnizioni e valvole a lamella	art.	00 KIT PVP 12 MX
Materiale fonoassorbente per scarico	art.	00 15 112
Vuotometro	art.	09 03 15


GENERATORI DI VUOTO MULTISTADIO PVP 12 MX / MXLP

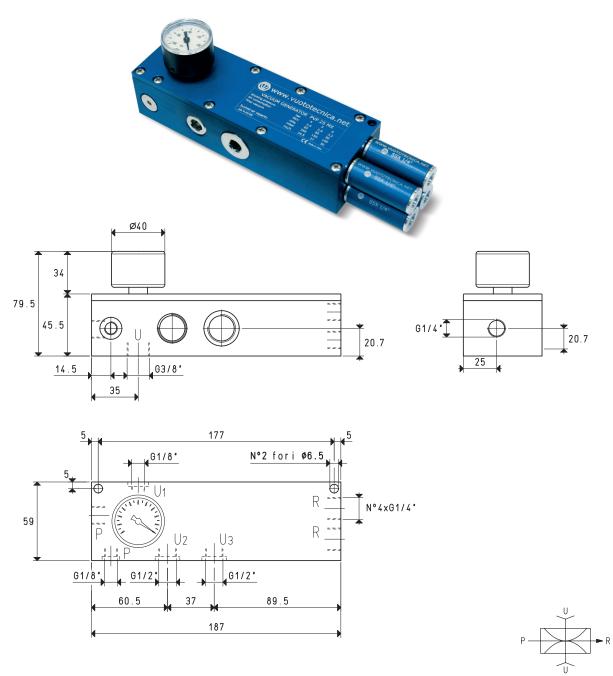
Portata d'aria (NI/s) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale

Generatore.	Press. alim.	Consumo aria	Portata d'aria (NI/s) ai diversi gradi di vuoto (-KPa) alla pressione di alimentazione ottimale									Vuoto max
art.	bar	NI/s	0	10	20	30	40	50	60	70	80	-KPa
PVP 12 MX PVP 12 MXLP	6.0 3.0	1.5 2.3	5.80 5.00	4.14 2.27	2.76 1.66	1.38 1.05	0.98 0.88	0.78 0.77	0.59 0.64	0.41 0.42	0.23 0.22	90 86


Tempi di evacuazione (ms/l=s/m³) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale

Generatore.	Press. alim.	Te	Tempi di evacuazione (ms/l = s/m³) ai diversi gradi di vuoto (-KPa) alla pressione di alimentazione ottimale									
art.	bar	NI/s	10	20	30	40	50	60	70	80	85	-KPa
PVP 12 MX	6.0	1.5	15	38	85	204	365	559	929	1607	5916	90
PVP 12 MXLP	3.0	2.3	22	56	120	240	410	650	975	1950	7160	86

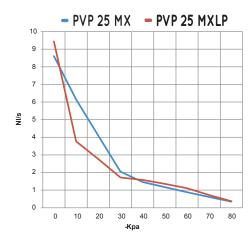
ACCESSORI A RICHIESTA


Silenziatore art. SSX 3/8"

8

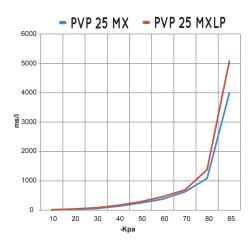
P=CONNESSIONE ARIA COMPRESSA	R=SCARICO	U=CONNESSIONE VUOTO	U 1-2-3=CONNESSIONE VUOTO SUPPLEMENTARE

T CONTRESSIONE ARRIA COMINE	JOA IN SCAINE	0 0 0011111	ESSIOTAL V	010 012	O CONTRESSIONE V						
Art.			PVP 25 MX	,	P	PVP 25 MXLP					
Quantità di aria aspirata	m³/h	25.0	28.0	31.0	19.0	27.5	34.0				
Massimo grado di vuoto	-KPa	65	85	90	30	61	86				
Pressione finale	mbar ass.	350	150	100	700	390	140				
Pressione di alimentazione	bar	4	5	6	1	2	3				
Pressione di alimentazione ottimale	bar			6			3				
Consumo di aria	NI/s	2.1	2.6	3.0	2.2	3.2	4.5				
Temperatura di utilizzo	°C			-20 / +100			-20 / +100				
Livello di rumorosità alla pressione di alimentazione ottimale	dB(A)			70			70				
Peso	g			960			960				


Ricambi		PVP 25 MX / MXLP
Kit di guarnizioni e valvole a lamella	art.	00 KIT PVP 25 MX
Materiale fonoassorbente per scarico	art.	00 15 113
Vuotometro	art.	09 03 15

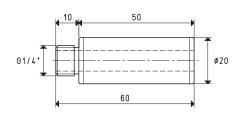
N.B. Tutti i valori di vuoto indicati in tabella sono validi alla normale pressione atmosferica di 1013 mbar ed ottenuti con una pressione di alimentazione costante.

L'alimentazione dei generatori di vuoto, deve essere effettuata con aria compressa non lubrificata, filtrazione 5 micron, secondo norma ISO 8573-1 classe 4.


GENERATORI DI VUOTO MULTISTADIO PVP 25 MX / MXLP

Portata d'aria (NI/s) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale

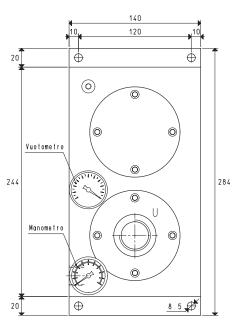
Generatore.	Press. alim.	Consumo aria	Portata d'aria (NI/s) ai diversi gradi di vuoto (-KPa) alla pressione di alimentazione ottimale								Vuoto max	
art.	bar	NI/s	0	10	20	30	40	50	60	70	80	-KPa
PVP 25 MX	6.0	3.0	8.61	6.15	4.10	2.05	1.46	1.17	0.88	0.61	0.35	90
PVP 25 MXLP	3.0	4.5	9.44	3.77	2.77	1.72	1.58	1.36	1.11	0.72	0.37	86

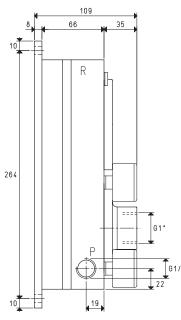

Tempi di evacuazione (ms/l=s/m³) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale

Generatore.	Press. alim.	Te	Tempi di evacuazione (ms/l = s/m³) ai diversi gradi di vuoto (-KPa) alla pressione di alimentazione ottimale									
art.	bar	NI/s	10	20	30	40	50	60	70	80	85	-KPa
PVP 25 MX	6.0	3.0	10	26	57	137	246	377	626	1083	3986	90
PVP 25 MXLP	3.0	4.5	16	41	83	165	290	460	690	1380	5070	86

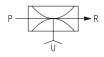
ACCESSORI A RICHIESTA

N° 4 silenziatori art. SSX 1/4"





GENERATORI DI VUOTO MULTISTADIO PVP 40 M / MLP ÷ PVP 300 M / MLP



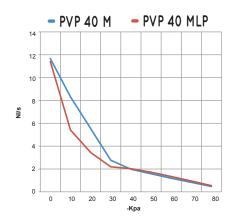
Nati per essere assemblati sui sistemi di presa OCTOPUS, questa serie di generatori sono disponibili con portate d'aspirazione comprese tra 24 e 320 m³/h. La pressione d'alimentazione è di 4÷6 bar, per gli articoli M e di 1÷3 bar, per gli MLP. Possibilità di regolazione del grado di vuoto e della portata, in funzione della pressione dell'aria d'alimentazione. Caratterizzati da eiettori di nuova concezione, vantano un eccezionale rapporto tra la quantità d'aria consumata e quella aspirata, a tutto vantaggio dei consumi operativi. I silenziatori sono integrati su tutti i generatori. Sono interamente realizzati in alluminio anodizzato, con gli eiettori e la viteria in acciaio inox. Le guarnizioni di tenuta e le valvole a lamella, sono in EPDM o in VITON, a richiesta. La manutenzione è ridotta ad una semplice pulizia periodica dei filtri.

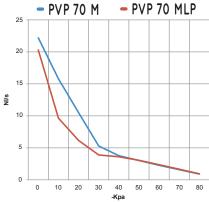
P=CONNESSIONE ARIA COMPRESSA	R=SCARICO	U=CONNESSIONE VUOTO

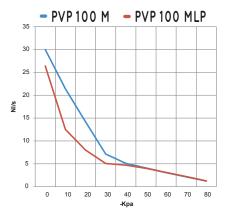
Art.		ı	PVP 40 N	И	I	PVP 70 N	1	P	VP 100	М
Quantità di aria aspirata	m³/h	36	39	42	65	73	80	88	98	108
Massimo grado di vuoto	-KPa	65	82	90	65	82	90	65	82	90
Pressione finale	mbar ass.	350	180	100	350	180	100	350	180	100
Pressione di alimentazione	bar	4	5	6	4	5	6	4	5	6
Pressione di alimentazione ottimale	bar			6			6			6
Consumo di aria	NI/s	2.3	2.7	3.2	4.9	5.7	6.6	7.2	8.5	9.8
Temperatura di utilizzo	°C		-2	20 / +100		-2	20 / +100		-2	20 / +100
Livello di rumorosità alla pressione di alimentazione ottimale	dB(A)			67			68			70
Peso	Kg			4.2			4.2			4.2

Art.		P	VP 40 MI	LP	Р	VP 70 MI	_P	PV	'P 100 N	ILP
Quantità di aria aspirata	m³/h	24	35	41	41	56	73	50	80	95
Massimo grado di vuoto	-KPa	30	64	88	30	64	88	30	64	88
Pressione finale	mbar ass.	700	360	120	700	360	120	700	360	120
Pressione di alimentazione	bar	1	2	3	1	2	3	1	2	3
Pressione di alimentazione ottimale	bar			3			3			3
Consumo di aria	NI/s	2.4	3.4	4.4	4.6	7.0	8.9	6.7	10.2	13.3
Temperatura di utilizzo	°C		-2	0 / +100		-2	20 / +100		-/2	20 / +100
Livello di rumorosità alla	I= (1)									
pressione di alimentazione ottimale	dB(A)			70			72			75
Peso	Kg			4.2			4.2			4.2

Ricambi		PVP 40 M / MLP	PVP 70 M / MLP	PVP 100 M / MLP
Kit di guarnizioni e valvole a lamella	art.	00 KIT PVP 40 M	00 KIT PVP 70 M	00 KIT PVP 100 M
Silenziatore su scarico	art.	00 15 110	00 15 110	00 15 110
Silenziatore su ugelli	art.	00 15 111	00 15 111	00 15 111
Vuotometro	art.	09 03 15	09 03 15	09 03 15
Manometro	art.	09 03 25	09 03 25	09 03 25

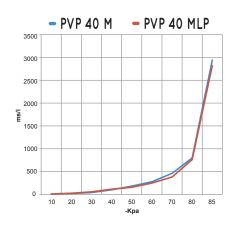

N.B. Tutti i valori di vuoto indicati in tabella sono validi alla normale pressione atmosferica di 1013 mbar ed ottenuti con una pressione di alimentazione costante.

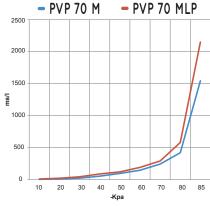

L'alimentazione dei generatori di vuoto, deve essere effettuata con aria compressa non lubrificata, filtrazione 5 micron, secondo norma ISO 8573-1 classe 4.

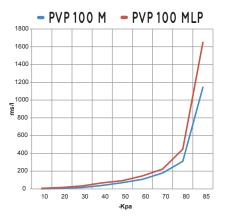


GENERATORI DI VUOTO MULTISTADIO PVP 40 M / MLP, PVP 70 M / MLP e PVP 100 M / MLP

Portata d'aria (NI/s) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale

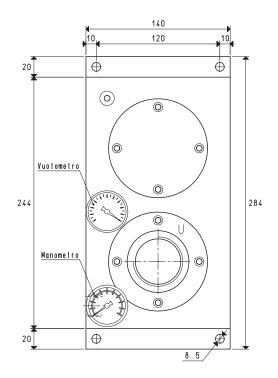


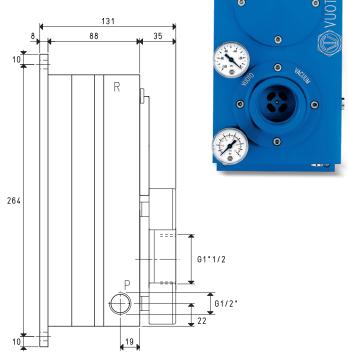




Generatore.	Press. alim.	Consumo aria		Por	tata d'ari alla pre		ai diversi li alimen			(Pa)		Vuoto max
art.	bar	NI/s	0	10	20	30	40	50	60	70	80	-KPa
PVP 40 M	6.0	3.2	11.66	8.32	5.55	2.77	1.98	1.58	1.19	0.83	0.47	90
PVP 70 M	6.0	6.6	22.20	15.80	10.50	5.29	3.77	3.02	2.27	1.58	0.90	90
PVP 100 M	6.0	9.8	30.00	21.40	14.20	7.14	5.10	4.08	3.06	2.14	1.22	90
PVP 40 MLP	3.0	4.4	11.40	5.42	3.45	2.19	2.03	1.72	1.34	0.95	0.54	88
PVP 70 MLP	3.0	8.9	20.30	9.65	6.15	3.88	3.61	3.05	2.36	1.66	0.94	88
PVP 100 MLP	3.0	13.3	26.40	12.50	8.00	5.07	4.70	4.00	3.10	2.20	1.25	88

Tempi di evacuazione (ms/l=s/m³) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale

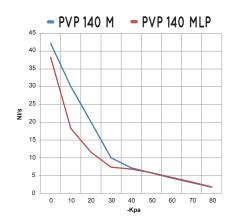


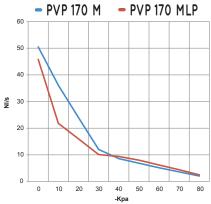


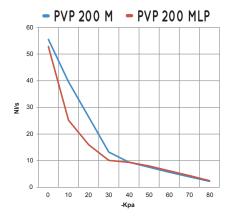
Generatore.	Press. alim.	Consumo aria	Те	mpi di ev	acuazior alla pr	ne (ms/l : essione d	= s/m³) ai li alimen	i diversi (tazione o	gradi di v ttimale	ruoto (-K	Pa)	Vuoto max
art.	bar	NI/s	10	20	30	40	50	60	70	80	85	-KPa
PVP 40 M	6.0	3.2	7.7	19.2	42.3	101.6	182.0	278.4	462.3	799.8	2943	90
PVP 70 M	6.0	6.6	4.0	10.1	22.2	53.3	95.5	146.1	242.6	419.7	1544	90
PVP 100 M	6.0	9.8	3.0	7.4	16.4	39.5	70.7	108.2	179.6	310.8	1144	90
PVP 40 MLP	3.0	4.4	12.0	28.0	58.0	116.0	158.0	250.0	382.0	764.0	2820	88
PVP 70 MLP	3.0	8.9	9.0	21.0	44.0	88.0	120.0	190.0	290.0	580.0	2150	88
PVP 100 MLP	3.0	13.3	7.0	16.0	34.0	68.0	93.0	147.0	224.0	448.0	1650	88

GENERATORI DI VUOTO MULTISTADIO PVP 140 M / MLP, PVP 170 M / MLP e PVP 200 M / MLP

P=CONNESSIONE ARIA COMPRES	SSA R=S	CARICO	U=CC	DNNESSIONE	VUOTO					
Art.		F	VP 140	М	P	VP 170	М	P	VP 200	М
Quantità di aria aspirata	m³/h	125	140	152	150	168	182	170	188	200
Massimo grado di vuoto	-KPa	65	82	90	65	82	90	65	82	90
Pressione finale	mbar ass.	350	180	100	350	180	100	350	180	100
Pressione di alimentazione	bar	4	5	6	4	5	6	4	5	6
Pressione di alimentazione ottimale	bar			6			6			6
Consumo di aria	NI/s	9.6	11.4	13.0	12.1	14.2	16.3	14.2	16.9	19.4
Temperatura di utilizzo	°C		-:	20 / +100			20 / +100		=	20 / +100
Livello di rumorosità alla pressione di alimentazione ottimale	dB(A)			70			71			72
Peso	Kg			5.1			5.1			5.1

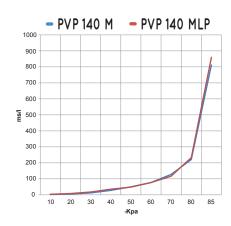

Art.		PV	'P 140 N	ILP	PV	'P 170 N	ILP	PV	PVP 200 MLP			
Quantità di aria aspirata	m³/h	73	115	138	80	137	165	105	157	190		
Massimo grado di vuoto	-KPa	30	64	88	30	64	88	30	64	88		
Pressione finale	mbar ass.	700	360	120	700	360	120	700	360	120		
Pressione di alimentazione	bar	1	2	3	1	2	3	1	2	3		
Pressione di alimentazione ottimale	bar			3			3			3		
Consumo di aria	NI/s	8.6	13.3	17.8	10.5	16.3	22.2	12.8	20.0	26.6		
Temperatura di utilizzo	°C		-/2	20 / +100		-/2	20 / +100		-:	20 / +100		
Livello di rumorosità alla pressione di alimentazione ottimale Peso	dB(A) Kg			75 5.1			76 5.1			78 5.1		

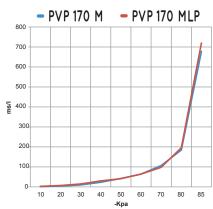

Ricambi		PVP 140 M / MLP	PVP 170 M / MLP	PVP 200 M / MLP
Kit di guarnizioni e valvole a lamella	art.	00 KIT PVP 140 M	00 KIT PVP 170 M	00 KIT PVP 200 M
Silenziatore su scarico	art.	00 15 110	00 15 110	00 15 110
Silenziatore su ugelli	art.	N°2 00 15 111	N°2 00 15 111	N°2 00 15 111
Vuotometro	art.	09 03 15	09 03 15	09 03 15
Manometro	art.	09 03 25	09 03 25	09 03 25

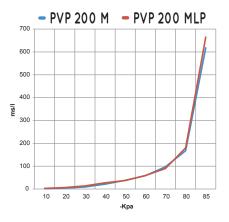


GENERATORI DI VUOTO MULTISTADIO PVP 140 M / MLP, PVP 170 M / MLP e PVP 200 M / MLP

Portata d'aria (NI/s) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale

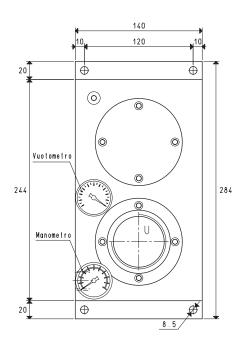


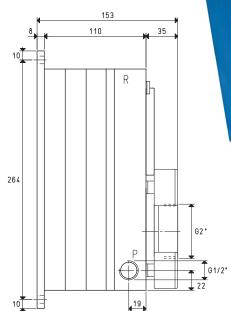


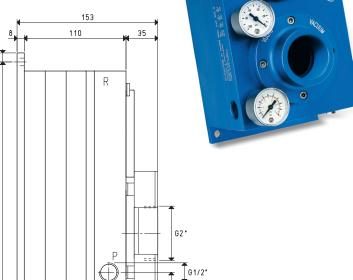


Generatore.	Press. alim.	Consumo aria		Por		a (NI/s) a essione d				(Pa)		Vuoto max
art.	bar	NI/s	0	10	20	30	40	50	60	70	80	-KPa
PVP 140 M	6.0	13.0	42.20	30.10	20.10	10.00	7.18	5.74	4.31	3.02	1.72	90
PVP 170 M	6.0	16.3	50.50	36.10	24.00	12.03	8.59	6.87	5.17	3.61	2.06	90
PVP 200 M	6.0	19.4	55.50	39.60	26.40	13.22	9.44	7.55	5.68	3.97	2.27	90
PVP 140 MLP	3.0	17.8	38.30	18.30	11.60	7.36	6.84	5.80	4.50	3.20	1.80	88
PVP 170 MLP	3.0	22.2	45.80	21.80	13.80	8.81	8.18	6.94	5.39	3.82	2.16	88
PVP 200 MLP	3.0	26.6	52.80	25.20	16.00	10.10	9.40	8.00	6.20	4.40	2.50	88

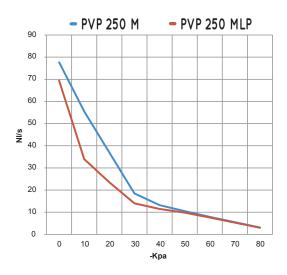
Tempi di evacuazione (ms/l=s/m³) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale

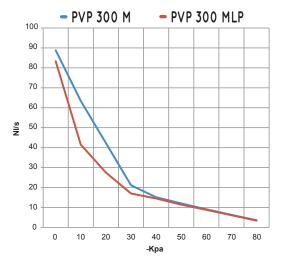






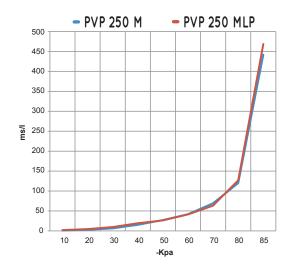

Generatore.	Press. alim.	Consumo aria	Te	Tempi di evacuazione (ms/l = s/m³) ai diversi gradi di vuoto (-KPa) alla pressione di alimentazione ottimale											
art.	bar	NI/s	10	20	30	40	50	60	70	80	85	-KPa			
PVP 140 M	6.0	13.0	2.1	5.3	11.7	28.0	50.2	76.9	127.6	220.8	812	90			
PVP 170 M	6.0	16.3	1.7	4.4	9.7	23.4	42.0	64.2	106.6	184.5	678	90			
PVP 200 M	6.0	19.4	1.6	4.0	8.9	21.3	38.2	58.4	97.0	167.8	618	90			
PVP 140 MLP	3.0	17.8	3.6	8.4	17.7	35.4	48.3	76.5	116.8	233.0	860	88			
PVP 170 MLP	3.0	22.2	3.0	7.1	14.9	29.9	40.6	64.2	98.0	196.0	720	88			
PVP 200 MLP	3.0	26.6	2.8	6.5	13.6	27.3	37.2	58.8	89.7	180.0	665	88			

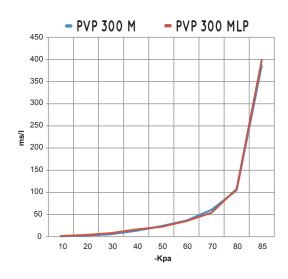



P=CONNESSIONE ARIA COMPRE	SSA R=SC	CARICO	U=C	CONNESSIC	NE VUOTO			
Art.				PVP 250 M			PVP 300 N	1
Quantità di aria aspirata	m³/h		224	252	280	240	290	320
Massimo grado di vuoto	-KPa		65	82	90	65	82	90
Pressione finale	mbar ass.		350	180	100	350	180	100
Pressione di alimentazione	bar		4	5	6	4	5	6
Pressione di alimentazione ottimale	bar				6			6
Consumo di aria	NI/s		17.3	20.7	24.0	20.4	24.8	29.0
Temperatura di utilizzo	°C				-20 / +100			-20 / +100
Livello di rumorosità alla pressione di alimentazione ottimale	dB(A)				72			74
•					. –			
Peso	Kg				6.0			6.0

Art.			PVP 250 ML	.P	Р	VP 300 M	LP
Quantità di aria aspirata	m³/h	120	185	250	128	210	300
Massimo grado di vuoto	-KPa	30	64	88	30	64	88
Pressione finale	mbar ass.	700	360	120	700	360	120
Pressione di alimentazione	bar	1	2	3	1	2	3
Pressione di alimentazione ottimale	bar			3			3
Consumo di aria	NI/s	16.0	25.0	33.6	19.1	28.8	39.3
Temperatura di utilizzo	°C			-20 / +100			-20 / +100
Livello di rumorosità alla pressione di alimentazione ottimale	dB(A)			77			78
•	` '			11			. •
Peso	Kg			6.0			6.0

Ricambi		PVP 250 M / MLP	PVP 300 M / MLP
Kit di guarnizioni e valvole a lamella	art.	00 KIT PVP 250 M	00 KIT PVP 300 M
Silenziatore su scarico	art.	00 15 110	00 15 110
Silenziatore su ugelli	art.	N°3 00 15 111	N°3 00 15 111
Vuotometro	art.	09 03 15	09 03 15
Manometro	art.	09 03 25	09 03 25


Portata d'aria (NI/s) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale

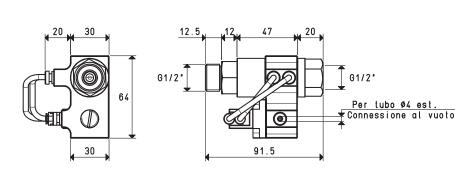


Generatore.	Press. alim.	Consumo aria		Por				gradi di tazione o		(Pa)		Vuoto max
art.	bar	NI/s	0	10	20	30	40	50	60	70	80	-KPa
PVP 250 M	6.0	24.0	77.7	55.5	37.0	18.5	13.2	10.5	7.9	5.5	3.1	90
PVP 300 M	6.0	29.0	88.8	63.4	42.3	21.1	15.1	12.0	9.1	6.3	3.6	90
PVP 250 MLP PVP 300 MLP	3.0 3.0	33.6 39.3	69.4 83.3	34.0 41.5	23.5 27.5	14.0 17.0	11.5 14.5	9.8 11.4	7.6 8.8	5.3 6.1	3.0 3.4	88 88

Tempi di evacuazione (ms/l=s/m³) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale

Generatore.	Press. alim.	Consumo aria	Tei	Tempi di evacuazione (ms/l = s/m³) ai diversi gradi di vuoto (-KPa) alla pressione di alimentazione ottimale							Pa)	Vuoto max
art.	bar	NI/s	10	20	30	40	50	60	70	80	85	-KPa
PVP 250 M	6.0	24.0	1.1	2.9	6.4	15.2	27.3	41.8	69.3	119.9	442.0	90
PVP 300 M	6.0	29.0	1.0	2.5	5.5	13.3	23.8	36.5	60.6	104.9	386.0	90
PVP 250 MLP PVP 300 MLP	3.0 3.0	33.6 39.3	2.0 1.7	4.6 3.9	9.6 8.2	19.3 16.4	26.3 22.3	41.5 35.3	63.5 54.0	127.0 108.0	468.7 398.5	88 88

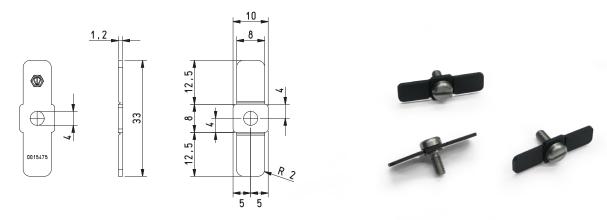
8



1 - VALVOLA DI ALIMENTAZIONE AD OTTURATORE COASSIALE, SERVOPILOTATA

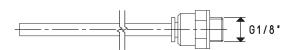
Trattasi di una valvola innovativa ad otturatore coassiale, azionata pneumaticamente dal vacuostato integrato su di essa, in grado di intercettare l'aria compressa di alimentazione al generatore di vuoto, con pressioni operative comprese tra 1,5 e 7 bar. Il vacuostato ha la funzione di togliere e di ridare un segnale pneumatico al raggiungimento di un determinato grado di vuoto preimpostato e regolabile.

Il differenziale di pressione esistente tra il valore massimo impostato e quello di ripristino del segnale a riposo, non è regolabile ed è pari a circa 100 mbar. Il vacuostato pneumatico, agendo sulla valvola di alimentazione ad otturatore coassiale, ha la proprietà di mantenere automaticamente il grado di vuoto massimo e minimo, entro il valore del differenziale.


Art.	Per generatore art.	Peso g
07 03 71	PVP 40 ÷ 300 M/MLP	355

ACCESSORI PER GENERATORI DI VUOTO PVP 40 M / MLP ÷ PVP 300 M / MLP

2 - KIT DI VALVOLE A LAMELLA PER IL DISPOSITIVO DI RITEGNO DEI GENERATORI DI VUOTO


Questo kit di valvole a lamella, appositamente studiato per essere integrato sui generatori di vuoto PVP 40 ÷ 300 M/MLP, ha la funzione di impedire il ritorno d'aria atmosferica nell'impianto portato in vuoto (serbatoi, autoclavi, sistemi di presa a depressione, ventose, ecc.), all'arresto del generatore, garantendo la tenuta e mantenendo il grado di vuoto raggiunto all'utilizzo.

Art.	Per generatore art.	N° Pz	Peso g
00 KIT TRASM-MR	PVP 40 ÷ 300 M/MLP	3	8

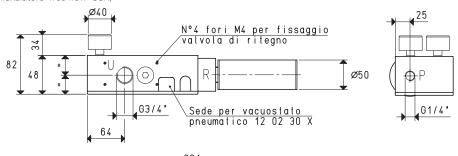
(3) - TUBO FLESSIBILE DI COLLEGAMENTO AL VUOTO

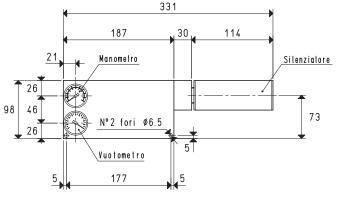
Questo tubo flessibile è munito, ad una estremità, di un raccordo rapido da 1/8", da avvitare su una delle due connessioni del generatore di vuoto riservate al vuotometro, mentre l'altra estremità libera, va inserita nel raccordo installato sul vacuostato pneumatico. La funzione di questo tubo è quella di monitorare in continuazione il valore del grado di vuoto raggiunto all'utilizzo e di trasmetterlo al vacuostato.

KIT COMPLETO PER DISPOSITIVO DI RISPARMIO ENERGETICO ES

I tre elementi sopra descritti, compongono un Kit per il risparmio energetico dell'aria compressa d'alimentazione ES (Energy Saving System). Il dispositivo ES, infatti, agisce direttamente sul generatore facendolo operare solamente entro i valori di vuoto prestabiliti, limitando in tal modo il consumo dell'aria compressa d'alimentazione; tutto ciò comporta un notevole risparmio energetico.

Questo Kit è stato studiato per la serie di generatori PVP 40 ÷ 300 M/MLP.


GENERATORI DI VUOTO MULTISTADIO PVP 25 MDX / MDXLP ÷ PVP 75 MDX / MDXLP



Questa linea di generatori di vuoto è disponibile con portate d'aspirazione comprese tra 20 e 103 m³/h. La pressione d'alimentazione è di 4÷6 bar, per gli articoli MDX e di 1÷3 bar, per gli MDXLP. Il massimo grado di vuoto è di -90 KPa. Caratterizzati da eiettori di nuova concezione, vantano un eccezionale rapporto tra la quantità di aria consumata e quella aspirata, a tutto vantaggio dei consumi operativi. Sono interamente realizzati in alluminio anodizzato, con eiettori e viteria in acciaio inox. La guarnizione di tenuta è in EPDM, mentre le valvole a lamella sono realizzate in silicone di serie e in VITON[®], su richiesta. Il silenziatore "free-flow" SSX,

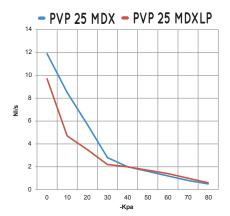
ad alto abbattimento sonoro, è installato di serie sullo scarico dell'aria. Sono dotati di connessioni supplementari filettate per ulteriori punti d'utilizzo o per l'installazione di strumenti di misura o di controllo. Su ruchiesta, sono dotabili di un kit per il risparmio energetico dell'aria compressa ES (ENERGY SAVING SYSTEM), composto da un vacuostato pneumatico, una valvola pneumatica d'alimentazione ad otturatore coassiale, una valvola di ritegno e la tuberia necessaria.

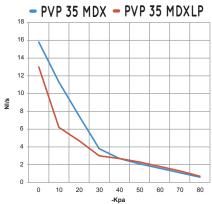
P=CONNESSIONE ARIA COMPRESSA

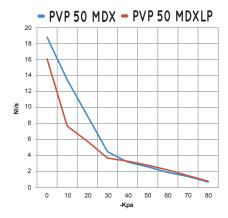
R=SCARICO

U=CONNESSIONE VUOTO

Art.		PVP 25 MDX			P\	/P 35 M	DX	P۱	/P 50 M	DX
Quantità di aria aspirata	m³/h	35	39	43	47	52	57	57	62	68
Massimo grado di vuoto	-KPa	65	82	90	65	82	90	65	82	90
Pressione finale	mbar ass.	350	180	100	350	180	100	350	180	100
Pressione di alimentazione	bar	4	5	6	4	5	6	4	5	6
Pressione di alimentazione ottimale	bar			6			6			6
Consumo di aria	NI/s	2.3	2.8	3.2	3.4	4.1	4.8	4.7	5.6	6.5
Temperatura di utilizzo	°C			-20 / + 80			-20 / +80			-20 / +80
Livello di rumorosità alla pressione di alimentazione ottimale	dB(A)			58			58			60
Peso	Kg			1.71			1.73			1.75

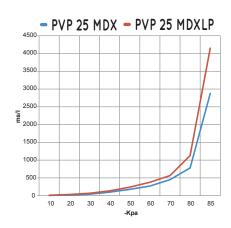

Art.		PVP 25 MDXLP			PVI	PVP 35 MDXLP			PVP 50 MDXLP			
Quantità di aria aspirata	m³/h	20	28	35	26	38	47	31	48	58		
Massimo grado di vuoto	-KPa	30	64	88	30	64	88	30	64	88		
Pressione finale	mbar ass.	700	360	120	700	360	120	700	360	120		
Pressione di alimentazione	bar	1	2	3	1	2	3	1	2	3		
Pressione di alimentazione ottimale	bar			3			3			3		
Consumo di aria	NI/s	2.2	3.3	4.4	3.4	5.0	6.5	4.5	6.6	8.6		
Temperatura di utilizzo	°C		-'2	20 / +100		-/2	20 / +100		-/2	20 / +100		
Livello di rumorosità alla pressione di alimentazione ottimale Peso	dB(A) Kg			62 1.71			68 1.73			74 1.75		

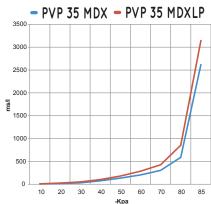

Ricambi		PVP 25 MDX / MDXLP	PVP 35 MDX / MDXLP	PVP 50 MDX / MDXLP
Kit di guarnizioni e valvole a lamella	art.	00 KIT PVP 25 MDX	00 KIT PVP 35 MDX	00 KIT PVP 50 MDX
Vuotometro	art.	09 03 15	09 03 15	09 03 15
Manometro	art.	09 03 25	09 03 25	09 03 25
Silenziatore	art.	SSX 3/4"	SSX 3/4"	SSX 3/4"

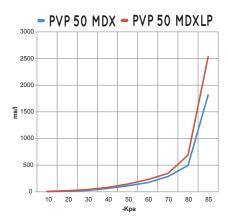


GENERATORI DI VUOTO MULTISTADIO PVP 25 MDX / MDXLP, PVP 35 MDX / MDXLP e PVP 50 MDX / MDXLP

Portata d'aria (NI/s) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale

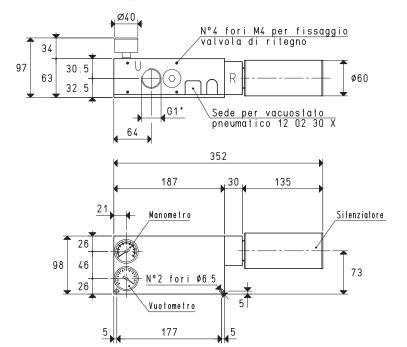


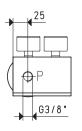


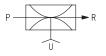


Generatore.	Press. alim.	Consumo aria		Portata d'aria (NI/s) ai diversi gradi di vuoto (-KPa) alla pressione di alimentazione ottimale								Vuoto max
art.	bar	NI/s	0	10	20	30	40	50	60	70	80	-KPa
PVP 25 MDX	6.0	3.2	11.9	8.5	5.7	2.8	2.0	1.6	1.2	0.8	0.5	90
PVP 35 MDX	6.0	4.8	15.8	11.3	7.5	3.8	2.7	2.1	1.6	1.1	0.6	90
PVP 50 MDX	6.0	6.5	18.8	13.5	9.0	4.5	3.2	2.6	1.9	1.4	0.7	90
PVP 25 MDXLP	3.0	4.4	9.7	4.7	3.5	2.2	2.0	1.7	1.4	1.0	0.6	88
PVP 35 MDXLP	3.0	6.5	13.0	6.2	4.7	3.0	2.7	2.3	1.8	1.3	0.7	88
PVP 50 MDXLP	3.0	8.6	16.1	7.7	5.8	3.7	3.3	2.8	2.2	1.5	0.8	88

Tempi di evacuazione (ms/l=s/m³) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale

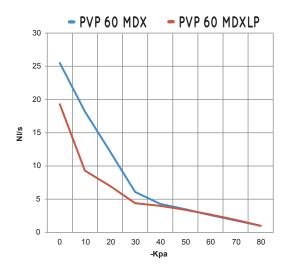


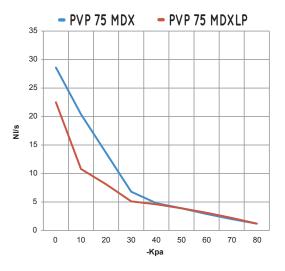



Generatore.	Press. alim.	Consumo aria	Ter	Tempi di evacuazione (ms/l = s/m³) ai diversi gradi di vuoto (-KPa) alla pressione di alimentazione ottimale							Pa)	Vuoto max
art.	bar	NI/s	10	20	30	40	50	60	70	80	85	-KPa
PVP 25 MDX	6.0	3.2	7.5	18.8	41.3	99.3	177.7	271.9	451.4	781.0	2874	90
PVP 35 MDX	6.0	4.8	5.6	14.1	31.2	74.9	134.0	205.1	340.5	589.1	2618	90
PVP 50 MDX	6.0	6.5	4.7	11.9	26.2	62.8	112.4	172.0	285.5	494.0	1818	90
PVP 25 MDXLP	3.0	4.4	13.0	33.3	67.2	134.4	238.0	376.0	564.0	1128.0	4151	88
PVP 35 MDXLP	3.0	6.5	9.8	25.2	50.9	101.9	180.3	284.9	427.3	854.7	3145	88
PVP 50 MDXLP	3.0	8.6	7.9	20.3	41.0	82.0	145.3	229.5	344.3	688.5	2534	88

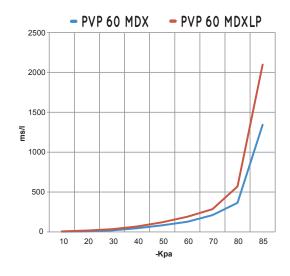
P=CONNESSIONE ARIA COMPRESSA	R=SCARICO	U=CONNESSIONE VUOTO

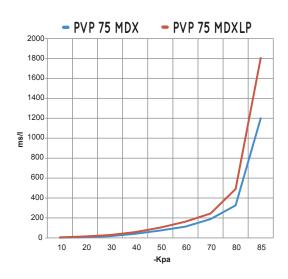
Art.			PVP 60 MD	(PVP 75 MD	х
Quantità di aria aspirata	m³/h	75	85	92	85	94	103
Massimo grado di vuoto	-KPa	65	82	90	65	82	90
Pressione finale	mbar ass.	350	180	100	350	180	100
Pressione di alimentazione	bar	4	5	6	4	5	6
Pressione di alimentazione ottimale	bar			6			6
Consumo di aria	NI/s	5.9	7.0	8.2	7.0	8.4	9.8
Temperatura di utilizzo	°C			-20 / +80			-20 / +80
Livello di rumorosità alla pressione di alimentazione ottimale	dB(A)			65			70
Peso Peso	Kg			1.90			1.92


Art.			PVP 60 MDX	LP	P\	/P 75 MD)	(LP	
Quantità di aria aspirata	m³/h	35	57	65	44	70	80	
Massimo grado di vuoto	-KPa	30	64	88	30	64	88	
Pressione finale	mbar ass.	700	360	120	700	360	120	
Pressione di alimentazione	bar	1	2	3	1	2	3	
Pressione di alimentazione ottimale	bar			3			3	
Consumo di aria	NI/s	5.5	8.3	11.0	6.6	9.9	13.2	
Temperatura di utilizzo	°C			-20 / +100			-20 / +100	
Livello di rumorosità alla								
pressione di alimentazione ottimale	dB(A)			68			70	
Peso	Kg			1.90			1.92	

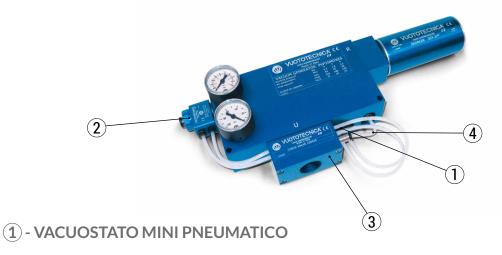

Ricambi		PVP 60 MDX / MDXLP	PVP 75 MDX / MDXLP
Kit di guarnizioni e valvole a lamella	art.	00 KIT PVP 60 MDX	00 KIT PVP 75 MDX
Vuotometro	art.	09 03 15	09 03 15
Manometro	art.	09 03 25	09 03 25
Silenziatore	art.	SSX 1"	SSX 1"

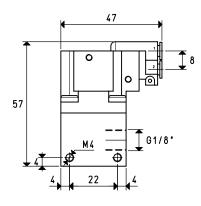
8


Portata d'aria (NI/s) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale



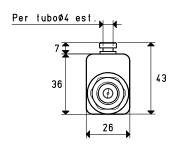
Generatore.	Press. alim. Consumo aria Portata d'aria (NI/s) ai diversi gradi di vuoto (-KPa) alla pressione di alimentazione ottimale								Vuoto max			
art.	bar	NI/s	0	10	20	30	40	50	60	70	80	-KPa
PVP 60 MDX	6.0	8.2	25.5	18.2	12.2	6.1	4.3	3.5	2.6	1.8	1.0	90
PVP 75 MDX	6.0	9.8	28.6	20.4	13.6	6.8	4.8	3.9	2.9	2.0	1.2	90
PVP 60 MDXLP PVP 75 MDXLP	3.0 3.0	11.0 13.2	19.3 22.5	9.3 10.8	7.0 8.1	4.4 5.1	4.0 4.6	3.4 3.9	2.7 3.1	1.9 2.2	1.0 1.2	88 88

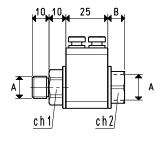

Tempi di evacuazione (ms/l=s/m³) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale



Generatore. Press. a	Press. alim.	Consumo aria	Tempi di evacuazione (ms/l = s/m³) ai diversi gradi di vuoto (-KPa) alla pressione di alimentazione ottimale								Vuoto max	
art.	par	NI/s	10	20	30	40	50	60	70	80	85	-KPa
PVP 60 MDX	6.0	8.2	3.5	8.8	19.3	46.4	83.0	127.0	211.0	365.0	1343	90
PVP 75 MDX	6.0	9.8	3.1	7.8	17.2	41.4	74.2	113.5	188.4	326.0	1200	90
PVP 60 MDXLP PVP 75 MDXLP	3.0 3.0	11.0 13.2	6.6 5.7	16.8 14.5	34.0 29.2	68.0 58.4	120.3 103.4	190.0 163.4	285.0 245.0	570.0 490.3	2098 1805	88 88

Il vacuostato ha la funzione di togliere un segnale pneumatico al raggiungimento di un determinato grado di vuoto regolabile. Il differenziale di pressione esistente tra il valore massimo impostato e quello di ripristino del segnale a riposo non è regolabile ed è pari a circa 100 mbar. Il vacuostato pneumatico, installato sui generatori di vuoto PVP 25 ÷ 75 MDX / MDXLP, agendo sulla valvola di alimentazione ad otturatore coassiale, ha la proprietà di mantenere automaticamente il grado di vuoto massimo e minimo, entro il valore del differenziale.



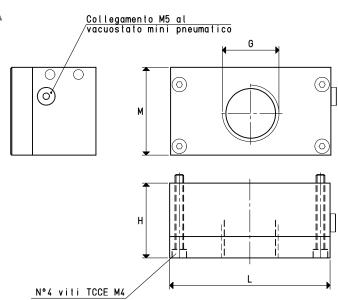


Art.	Per generatore art.	Peso g
12 01 30 X	PVP 25 ÷ 75 MDX/MDXLP	104

2 - VALVOLE DI ALIMENTAZIONE AD OTTURATORE COASSIALE SERVOPILOTATE

Trattasi di valvole ad otturatore coassiale, azionate pneumaticamente dal vacuostato o da una fonte alternativa, in grado di intercettare l'aria compressa di alimentazione ai generatori di vuoto, con pressioni comprese tra 1,5 e 7 bar. La loro scelta è in funzione della connessione di alimentazione del generatore e della quantità d'aria richiesta.

Art.	A Ø	В	ch1	ch2	Per generatore art.	Peso g
07 01 71	G 1/4"	10	19	19	PVP 25 ÷ 50 MDX/MDXLP	72
07 02 71	G 3/8"	15	19	19	PVP 50 ÷ 75 MDX/MDXLP	70



(3) - VALVOLA DI RITEGNO A MEMBRANA

È una valvola di ritegno appositamente studiata per adattarsi ai generatori di vuoto PVP 25 \div 75 MDX / MDXLP .

L'originalità di questa valvola, oltre la sua conformazione, consiste nell'organo di tenuta a membrana, in grado di garantire bassissime perdite di carico, rapidità d'intervento ed una tenuta perfetta.



Art.	G Ø	Н	L	М	Peso g	Per generatore art.
10 04 20	G3/4"	35	75	41	165	PVP 25 ÷ 50 MDX / MDXLP
10 05 20	G1"	48	113	58	458	PVP 60 ÷ 75 MDX / MDXLP

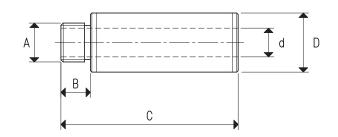
(4) - KIT DI TUBI FLESSIBILI CON RACCORDI

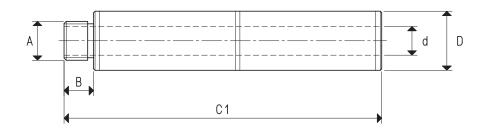
Questo kit di tubi flessibili serve a collegare il vacuostato mini alla valvola di alimentazione ad otturatore coassiale e alla valvola di ritegno a membrana; alle estremità dei tubi sono già assemblati gli appositi raccordi rapidi, da avvitare alle connessioni delle valvole e del vacuostato.

Art.	Per generatore art.	Peso g
00 15 308	PVP 25 ÷ 75 MDX / MDXLP	16

KIT COMPLETO PER DISPOSITIVO DI RISPARMIO ENERGETICO ES

Art.	Per generatore art.	Peso g
ES 01	PVP 25 ÷ 50 MDX / MDXLP	475
ES 02	PVP 60 ÷ 75 MDX / MDXLP	998


SILENZIATORI


L'impiego di materiale fonoassorbente in fibre naturali, racchiuso in appositi involucri di alluminio anodizzato, ha consentito la realizzazione di questa nuovissima gamma di silenziatori, in grado di abbattere notevolmente il rumore dell'aria in fase di scarico dei generatori di vuoto. Le versioni sono due e si distinguono per la loro lunghezza:

maggiore è la lunghezza, maggiore è l'abbattimento del rumore. Riduzione della rumorosità: da -13 a -20 dB

Temperatura di lavoro: da -20 a +100 °C.

Art.	A Ø	В	С	C1	D Ø	d Ø	Peso g
SSX 1/8"	G1/8"	10	58		17	7	14
SSX 1/4"	G1/4"	10	60		20	10	20
SSX 3/8" R	G3/8"	7	57		20	10	17
SSX 3/8"	G3/8"	12	84		29	16	52
SSX 1/2"	G1/2"	14	106		35	16	96
SSX 3/4" R	G3/4"	14	106		35	16	100
SSX 3/4"	G3/4"	14	126		50	21	174
SSX 1"	G1"	14	146		55	28	240
SSX 1" 1/2	G1" 1/2	30	210		80	38	302
SSX 2"	G2"	30	250		90	48	372
2SSX 1/8"	G1/8"	10		104	17	7	28
2SSX 1/4"	G1/4"	10		108	20	10	40
2SSX 3/8"	G3/8"	12		154	29	16	104
2SSX 1/2"	G1/2"	14		196	35	16	192
2SSX 3/4"	G3/4"	14		236	50	21	348
2SSX 1"	G1"	14		276	55	28	480

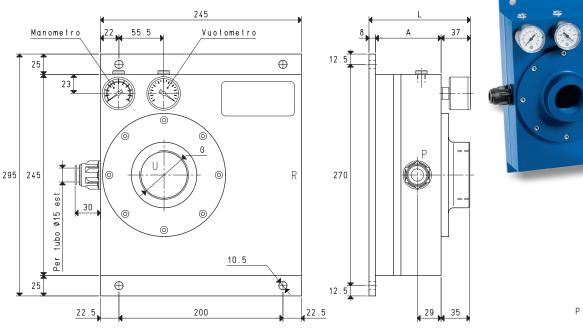
GENERATORI DI VUOTO MULTISTADIO E MODULARI, PVP 150MD / MDLP ÷ PVP 750 MD / MDLP - GENERALITÀ

La particolare conformazione di questi generatori di vuoto ha consentito di ottenere grandi capacità d'aspirazione in dimensioni molto contenute.

Gli eiettori in acciaio inox di nuova concezione, sono assemblati su telai modulari; la sovrapposizione di uno o più telai, determina la portata dei generatori. Sono disponibili con portate comprese tra 85 e 900 m³/h ed un grado di vuoto massimo di -90KPa. La pressione d'alimentazioneè di 4÷6 bar, per gli articoli MD e di 1÷3 bar, per gli MDLP. Possibilità di regolazione del grado di vuoto e della portata in funzione della pressione dell'aria d'alimentazione. Sono interamente realizzati in alluminio anodizzato. Le guarnizioni di tenuta e le valvole a disco sono di serie in EPDM, ma possono essre fornite in VITON®, su richiesta. Sempre su richiesta, sono dotabili di un kit per il risparmio energetico dell'aria compressa ES (Energy Saving System), composto da una valvola pneumatica ad otturatore coassiale per l'alimentazione dell'aria compressa, con vacuostato pneumatico integrato, un kit di valvole a lamella per il sistema di ritegno ed un tubo flessibile con raccordo rapido per monitorare e trasmettere il valore del grado di vuoto al vacuostato.

Perfettamente insonorizzati con silenziatori integrati su tutti i generatori, il loro funzionamento risulta estremamente silenzioso.

8


GENERATORI DI VUOTO MULTISTADIO E MODULARI PVP 150 MD / MDLP e PVP 300 MD / MDLP

P=CONNESSIONE ARIA COMPRESSA

Vuotometro

Manometro

R=SCARICO

Art.		I	PVP 150 M	D		PVP 300 N	/ID	
Quantità di aria aspirata	m³/h	160	180	200	320	360	400	
Massimo grado di vuoto	-KPa	65	82	90	65	82	90	
Pressione finale	mbar ass.	350	180	100	350	180	100	
Pressione di alimentazione	bar	4	5	6	4	5	6	
Pressione di alimentazione ottimale	bar			6			6	
Consumo di aria	NI/s	12.1	14.2	16.0	23.2	27.8	32.0	
Temperatura di utilizzo	°C			-20 / +100			-20 / +100	
Livello di rumorosità alla								
pressione di alimentazione ottimale	dB(A)			72			74	
Peso	Kg			7.0			8.0	
A				80			100	
G	Ø			G1" 1/2			G2"	
L				125			145	
Art.		P	VP 150 MD	LP	Р	VP 300 M	DLP	
Quantità di aria aspirata	m³/h	85	146	170	190	300	340	
Massimo grado di vuoto	-KPa	30	64	88	30	64	88	
Pressione finale	mbar ass.	700	360	120	700	360	120	
Pressione di alimentazione	bar	1	2	3	1	2	3	
Pressione di alimentazione ottimale	bar			3			3	
Consumo di aria	NI/s	10.5	16.5	22.6	22.5	33.6	45.5	
Temperatura di utilizzo	°C			-20 / +100			-20 / +100	
Livello di rumorosità alla pressione di alimentazione ottimale	dB(A)		76				78	
Peso	Kg		7.8				8.8	
A	3			80			100	
G	Ø			G1" 1/2			G2"	
L				125	145			
Ricambi		PV	P 150 MD /	MDLP	PV	P 300 MD	/ MDLP	
Kit di guarnizioni e valvole a lamella	art.	00	KIT PVP 1	50 MD	0() KIT PVP 3	800 MD	
Silenziatore su scarico	art.		00 15 70)	00 15 70			
Silenziatore su ugelli	art.		00 15 7	1	00 15 72			

09 03 15

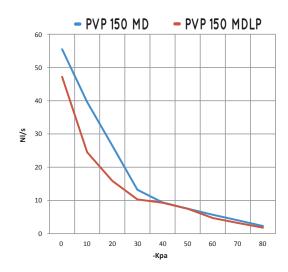
09 03 25

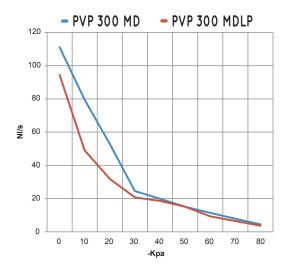
U=CONNESSIONE VUOTO

L'alimentazione dei generatori di vuoto, deve essere effettuata con aria compressa non lubrificata, filtrazione 5 micron, secondo norma ISO 8573-1 classe 4.

art.

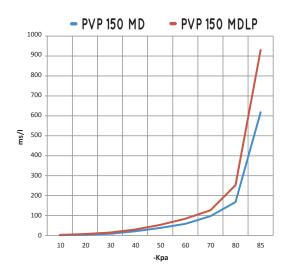
art.

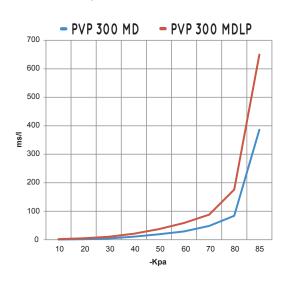

09 03 15


09 03 25

N.B. Tutti i valori di vuoto indicati in tabella sono validi alla normale pressione atmosferica di 1013 mbar ed ottenuti con una pressione di alimentazione costante. Aggiungendo all'articolo la lettera R, il generatore viene fornito con la valvola di ritegno integrata (Esempio: PVP 150 MDR).

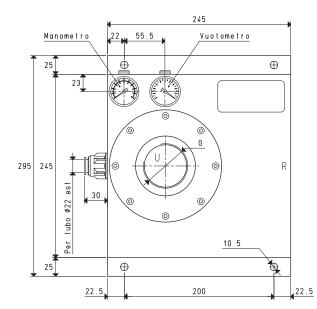
GENERATORI DI VUOTO MULTISTADIO E MODULARI PVP 150 MD / MDLP e PVP 300 MD / MDLP


Portata d'aria (NI/s) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale



Generatore.	Press. alim.	Consumo aria		Por			i diversi i aliment			(Pa)		Vuoto max
art.	bar	NI/s	0	10	20	30	40	50	60	70	80	-KPa
PVP 150 MD	6.0	16.0	55.5	39.6	26.5	13.2	9.4	7.5	5.7	4.0	2.3	90
PVP 300 MD	6.0	32.0	111.1	79.4	52.9	26.5	19.9	15.1	11.4	7.9	4.5	90
PVP 150 MDLP	3.0	22.6	47.2	24.5	15.9	10.3	9.3	7.5	4.7	3.2	1.8	88
PVP 300 MDLP	3.0	45.5	94.4	49.0	31.9	20.7	18.6	15.1	9.3	6.5	3.7	88

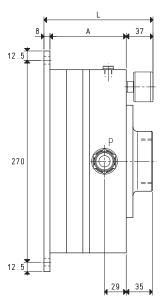
Tempi di evacuazione (ms/l=s/m³) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale



Generatore. Press. alim. art. bar	Consumo aria	alla pressione di alimentazione ottimale									Vuoto max	
art.	bar	NI/s	10	20	30	40	50	60	70	80	85	-KPa
PVP 150 MD	6.0	16.0	1.6	4.0	8.9	21.3	38.2	58.4	97.0	167.8	618	90
PVP 300 MD	6.0	32.0	0.8	2.0	4.4	10.6	19.1	29.2	48.5	83.9	386	90
PVP 150 MDLP PVP 300 MDLP	3.0 3.0	22.6 45.5	2.9 2.0	7.5 5.2	15.0 10.5	30.1 21.0	53.3 37.2	84.2 58.7	126.3 88.0	252.5 176.1	930 650	88 88

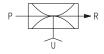
GENERATORI DI VUOTO MULTISTADIO E MODULARI PVP 450 MD / MDLP e PVP 600 MD / MDLP

P=CONNESSIONE ARIA COMPRESSA


Kit di guarnizioni e valvole a lamella

Silenziatore su scarico

Silenziatore su ugelli


Vuotometro

Manometro

U=CONNESSIONE VUOTO

Art.			PVP 450 N	MD		PVP 600 MD	
Quantità di aria aspirata	m³/h	490	530	580	640	700	750
Massimo grado di vuoto	-KPa	65	82			90	
Pressione finale	mbar ass.	350	180	100	350	180	100
Pressione di alimentazione	bar	4	5	6	4	5	6
Pressione di alimentazione ottimale	bar			6			6
Consumo di aria	NI/s	35.4	40.6	47.8	45.4	56.8	63.2
Temperatura di utilizzo	°C			-20 / +100			-20 / +100
Livello di rumorosità alla pressione di alimentazione ottimale	dB(A)			74			78
Peso	Kg			9.1			10.3
A	-			122			142
G	Ø			G2" 1/2			G3"
L				167	18		187
Art.			PVP 450 M	DLP	Р	VP 600 MD)LP
Quantità di aria aspirata	m³/h	250	440	500	330	330 590 670	
Massimo grado di vuoto	-KPa	30	64	88	30	64	88
Pressione finale	mbar ass.	700	360	120	700	360	120
Pressione di alimentazione	bar	1	2	3	1	2	3
Pressione di alimentazione ottimale	bar			3			3
Consumo di aria	NI/s	32.0	48.8	65.8	42.0	66.0	87.7
Temperatura di utilizzo	°C			-20 / +100			-20 / +100
Livello di rumorosità alla pressione di alimentazione ottimale	dB(A)			80		82	
Peso	Kg			9.1	10.3		10.3
A	-			122			142
**							
	Ø			G2" 1/2			G3"
G L	Ø			G2" 1/2 167			G3" 187

00 KIT PVP 450 MD

00 15 70

00 15 71 + 00 15 72

09 03 15

09 03 25

R=SCARICO

N.B. Tutti i valori di vuoto indicati in tabella sono validi alla normale pressione atmosferica di 1013 mbar ed ottenuti con una pressione di alimentazione costante.

Aggiungendo all'articolo la lettera R, il generatore viene fornito con la valvola di ritegno integrata (Esempio: PVP 450 MDR).

L'alimentazione dei generatori di vuoto, deve essere effettuata con aria compressa non lubrificata, filtrazione 5 micron, secondo norma ISO 8573-1 classe 4.

art.

art.

art.

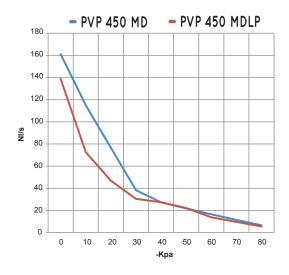
art.

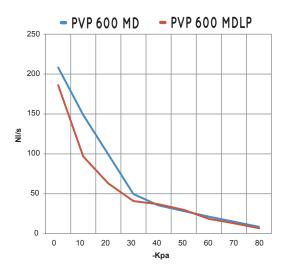
art.

00 KIT PVP 600 MD

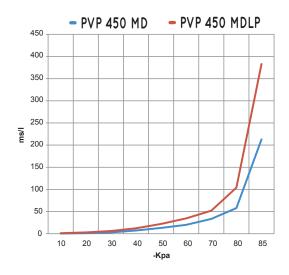
00 15 70

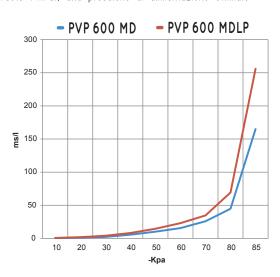
N°2 00 15 72


09 03 15

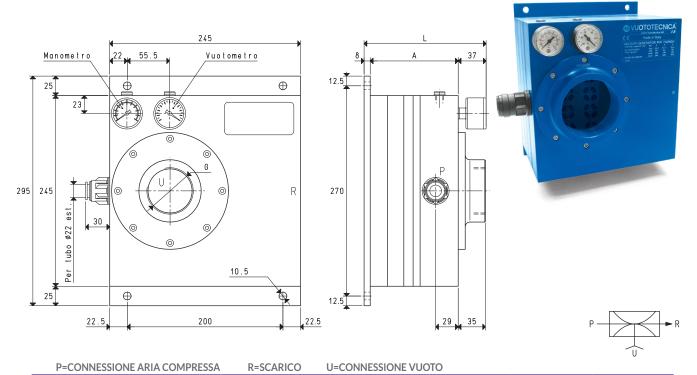

09 03 25

GENERATORI DI VUOTO MULTISTADIO E MODULARI PVP 450 MD / MDLP e PVP 600 MD / MDLP


Portata d'aria (NI/s) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale

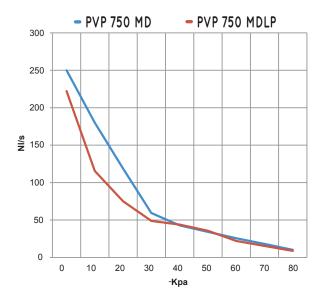


Generatore.		Portata d'aria (NI/s) ai diversi gradi di vuoto (-KPa) alla pressione di alimentazione ottimale							Vuoto max			
art.	bar	NI/s	0	10	20	30	40	50	60	70	80	-KPa
PVP 450 MD	6.0	47.8	161.1	115.0	76.7	38.3	27.4	21.9	16.5	11.5	6.6	90
PVP 600 MD	6.0	63.2	208.3	148.8	99.2	49.6	35.4	28.3	21.3	14.9	8.5	90
PVP 450 MDLP	3.0	65.8	138.8	72.7	46.9	30.5	27.4	22.2	13.8	9.6	5.5	88
PVP 600 MDLP	3.0	87.7	186.1	96.7	62.9	40.8	36.8	29.8	18.5	12.9	6.8	88


Tempi di evacuazione (ms/l=s/m³) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale

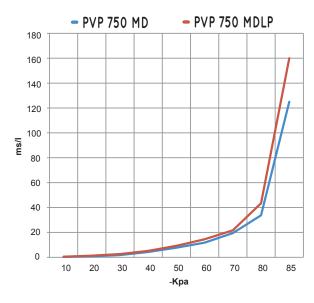
Generatore.	Press. alim.	Consumo aria	Tempi di evacuazione (ms/l = s/m³) ai diversi gradi di vuoto (-KPa) alla pressione di alimentazione ottimale								Vuoto max	
art.	bar	NI/s	10	20	30	40	50	60	70	80	85	-KPa
PVP 450 MD	6.0	47.8	0.5	1.4	3.0	7.4	13.2	20.1	33.5	57.9	213	90
PVP 600 MD	6.0	63.2	0.4	1.0	2.4	5.7	10.2	15.6	25.9	44.8	165	90
PVP 450 MDLP PVP 600 MDLP	3.0 3.0	65.8 87.7	1.2 0.8	3.0 2.0	6.2 4.1	12.4 8.2	22.0 14.6	34.7 23.1	52.0 34.7	104.1 69.4	383 256	88 88

Art.			PVP 750 M	0			
Quantità di aria aspirata	m³/h	650	780	900			
Massimo grado di vuoto	-KPa	65	82	90			
Pressione finale	mbar ass.	350	180	100			
Pressione di alimentazione	bar	4	5	6			
Pressione di alimentazione ottimale	bar			6			
Consumo di aria	NI/s	60.5	71.0	80.0			
Temperatura di utilizzo	°C			-20 / +80			
Livello di rumorosità alla pressione di alimentazione ottimale	dB(A)			84			
Peso	Kg			12.7			
A	TNG			164			
G	Ø			G3"			
L	Ø			209			
Art.		PVP 750 MDLP					
Quantità di aria aspirata	m³/h	420	650	800			
Massimo grado di vuoto	-KPa	30	64	88			
Pressione finale	mbar ass.	700	360	120			
Pressione di alimentazione	bar	1	2	3			
Pressione di alimentazione ottimale	bar			3			
Consumo di aria	NI/s	52.0	82.5	110.0			
Temperatura di utilizzo	°C			-20 / +100			
Livello di rumorosità alla pressione di alimentazione ottimale	dB(A)			85			
Peso	Kg			12.7			
A	9			164			
G	Ø			G3"			
L				209			
Ricambi		PV	/P 750 MD / N	MDLP			
Kit di guarnizioni e valvole a lamella	art.	00	0 KIT PVP 750) MD			
Silenziatore su scarico	art.		00 15 70				
Silenziatore su ugelli	art.	N°2	00 15 72 + 00	15 71			
Vuotometro	art.		09 03 15				
Manometro	art.		09 03 25				


N.B. Tutti i valori di vuoto indicati in tabella sono validi alla normale pressione atmosferica di 1013 mbar ed ottenuti con una pressione di alimentazione costante.

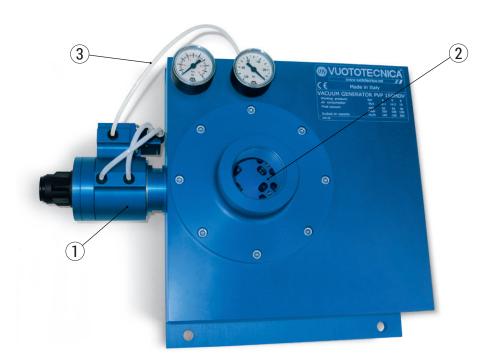
Aggiungendo all'articolo la lettera R, il generatore viene fornito con la valvola di ritegno integrata (Esempio: PVP 750 MDR).

L'alimentazione dei generatori di vuoto, deve essere effettuata con aria compressa non lubrificata, filtrazione 5 micron, secondo norma ISO 8573-1 classe 4.

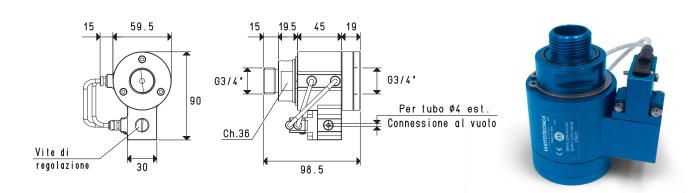

GENERATORI DI VUOTO MULTISTADIO E MODULARI PVP 750 MD / MDLP

Portata d'aria (NI/s) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale

Generatore.	Press. alim.	Consumo aria	Portata d'aria (NI/s) ai diversi gradi di vuoto (-KPa) alla pressione di alimentazione ottimale						Vuoto max			
art.	bar	INI/S	0	10	20	30	40	50	60	70	80	-KPa
PVP 750 MD	6.0	80.0	250.0	180.0	118.8	59.4	42.8	34.2	25.7	18.0	10.2	90
PVP 750 MDLP	3.0	110.0	222.2	115.5	75.1	48.8	43.9	35.6	22.0	15.4	8.8	88


Tempi di evacuazione (ms/l=s/m³) ai diversi gradi di vuoto (-KPa), alla pressione di alimentazione ottimale

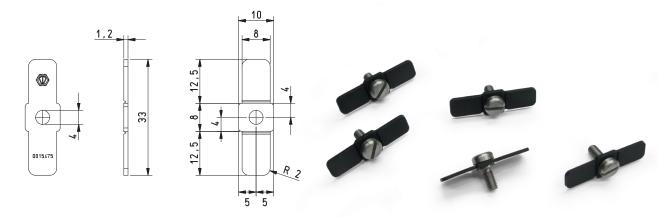
Generatore.	Press. alim.	Consumo aria	Tempi di evacuazione (ms/l = s/m³) ai diversi gradi di vuoto (-KPa) alla pressione di alimentazione ottimale						Pa)	Vuoto max		
art.	bar	NI/s	10	20	30	40	50	60	70	80	85	-KPa
PVP 750 MD PVP 750 MDLP	6.0 3.0	80.0 110.0	0.3 0.5	0.8 1.3	1.8 2.6	4.3 5.2	7.7 9.2	11.8 14.5	19.5 21.7	33.8 43.4	125 160	90 88


Sono disponibili i disegni 3D sul sito vuototecnica.net

(1) - VALVOLA DI ALIMENTAZIONE AD OTTURATORE COASSIALE, SERVOPILOTATA

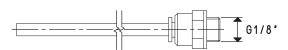
Trattasi di una valvola innovativa ad otturatore coassiale, azionata pneumaticamente dal vacuostato integrato su di essa, in grado di intercettare l'aria compressa di alimentazione al generatore di vuoto, con pressioni operative comprese tra 1,5 e 7 bar. Il vacuostato ha la funzione di togliere e di ridare un segnale pneumatico al raggiungimento di un determinato grado di vuoto preimpostato e regolabile.

Il differenziale di pressione esistente tra il valore massimo impostato e quello di ripristino del segnale a riposo, non è regolabile ed è pari a circa 100 mbar. Il vacuostato pneumatico, agendo sulla valvola di alimentazione ad otturatore coassiale, ha la proprietà di mantenere automaticamente il grado di vuoto massimo e minimo, entro il valore del differenziale.


Art.	Per generatore art.	Peso g
07 04 71	PVP 150 ÷ 750 MD/MDLP	570

ACCESSORI PER GENERATORI DI VUOTO PVP 150 MD / MDLP ÷ PVP 750 MD / MDLP

2 - KIT DI VALVOLE A LAMELLA PER IL DISPOSITIVO DI RITEGNO DEI GENERATORI DI VUOTO


Questo kit di valvole a lamella, appositamente studiato per essere integrato sui generatori di vuoto PVP 150/750 MD/MDLP, ha la funzione di impedire il ritorno d'aria atmosferica nell'impianto portato in vuoto (serbatoi, autoclavi, sistemi di presa a depressione, ventose, ecc.), all'arresto del generatore, garantendo la tenuta e mantenendo il grado di vuoto raggiunto all'utilizzo.

Art.	Per generatore art.	N° Pz	Peso g
00 KIT TRASMD-MDR	PVP 150 ÷ 750 MD/MDLP	6	16

(3) - TUBO FLESSIBILE DI COLLEGAMENTO AL VUOTO

Questo tubo flessibile è munito, ad una estremità, di un raccordo rapido da 1/8", da avvitare su una delle due connessioni del generatore di vuoto riservate al vuotometro, mentre l'altra estremità libera, va inserita nel raccordo installato sul vacuostato pneumatico. La funzione di questo tubo è quella di monitorare in continuazione il valore del grado di vuoto raggiunto all'utilizzo e di trasmetterlo al vacuostato.

KIT COMPLETO PER DISPOSITIVO DI RISPARMIO ENERGETICO ES

I tre elementi sopra descritti, compongono un Kit per il risparmio energetico dell'aria compressa d'alimentazione ES (Energy Saving System). Il dispositivo ES, infatti, agisce direttamente sul generatore facendolo operare solamente entro i valori di vuoto prestabiliti, limitando in tal modo il consumo dell'aria compressa d'alimentazione; tutto ciò comporta un notevole risparmio energetico.

Questo Kit è stato studiato espressamente per la serie di generatori PVP 150÷750 MD/MDLP.

GENERATORI DI VUOTO REGOLABILI CONVEYOR

Principio di funzionamento

Il funzionamento di guesti generatori di vuoto è basato sul principio Venturi.

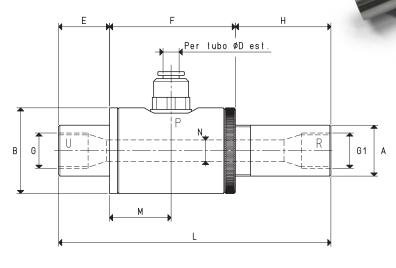
A differenza di quelli precedentemente descritti, l'eiettore di cui sono dotati, oltre ad avere un diametro di flusso nettamente superiore, è anche regolabile.

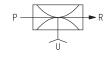
Questa particolarità consente di variare la portata ed il grado di vuoto dell'apparecchio, senza intervenire sul grado di pressione dell'aria di alimentazione.

Anche i consumi d'aria compressa sono rapportati alle effettive prestazioni del generatore di vuoto.

Caratteristiche

La particolare conformazione dei generatori di vuoto regolabili ed il loro principio di funzionamento a flusso rettilineo consentono l'aspirazione ed il trasferimento di prodotti di diversa natura, senza interferenze, come i generatori di flusso, solo che, a differenza di guesti ultimi, consentono di superare dislivelli nettamente


Sono adatti per il trasferimento di polveri, granulati, segatura, granaglie, trucioli metallici, prodotti alimentari liquidi o secchi, ecc.; per l'asservimento di ventose in presenza di abbondanti quantità di polveri o liquidi; oppure, per aspirare fumi, nebbie refrigeranti, condense d'acqua o d'olio, ecc. L'assenza di parti in movimento ne consente l'uso in continuo, senza sviluppo di calore.


Il livello di rumorosità, piuttosto elevato in questo genere di apparecchi, può essere notevolmente mitigato da un adeguato silenziatore, avvitato sulla connessione di scarico dell'aria.

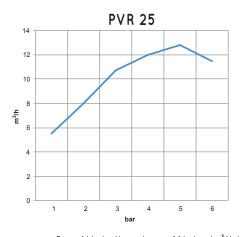
Non necessitano di corrente elettrica e, pertanto, possono essere impiegati anche in ambienti di lavoro con pericolo d'incendio o di deflagrazione.

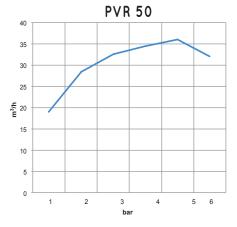
Sono disponibili in alluminio anodizzato e in acciaio inox.

Per le loro caratteristiche, è sufficiente una buona filtrazione dell'aria compressa d'alimentazione per eliminare qualsiasi forma di manutenzione.

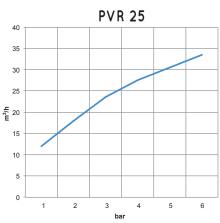
Aut		DVD 2E
P=CONNESSIONE ARIA COMPRESSA	R=SCARICO	U=CONNESSIONE VUOTO

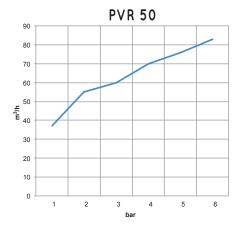
P-CONNESSIONE ARIA COMPRE	33A K-3C	ARICO U-CONNESSIONE VOOTO		
Art.		PVR 25	PVR 50	
Max quantità di aria aspirata a 5 bar	m³/h	13.0	36.0	
Max quantità di aria soffiata a 6 bar	m³/h	33.5	88.0	
Massimo grado di vuoto	-KPa	80	75	
Pressione finale	mbar ass.	200	250	
Max pressione di alimentazione	bar	6	6	
Consumo di aria a 6 bar	NI/s	6.1	15.5	
Temperatura di utilizzo	°C	-20 / +80	-20 / +80	
Livello di rumorosità	dB(A)	92	98	
Peso	g	150	280	
A	Ø	19	26	
В	Ø	32	38	
D	Ø	6	8	
E		19	35	
F		47	54	
G	Ø	G1/4"	G3/8"	
G 1	Ø	G1/4"	G1/2"	
Н		34	61	
L		100	150	
M		22	25	
N	Ø	6	10	

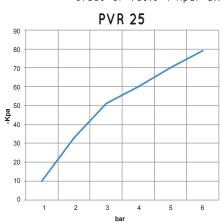

N.B. Tutti i valori di vuoto indicati in tabella sono validi alla normale pressione atmosferica di 1013 mbar ed ottenuti con una pressione di alimentazione costante. Aggiungendo all'articolo la lettera I, il generatore viene fornito in acciaio inox (Esempio: PVR 50 I).

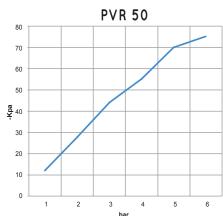

L'alimentazione dei generatori di vuoto, deve essere effettuata con aria compressa non lubrificata, filtrazione 5 micron, secondo norma ISO 8573-1 classe 4.

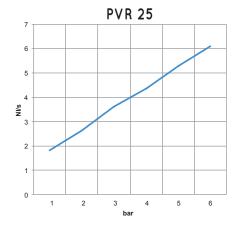
8

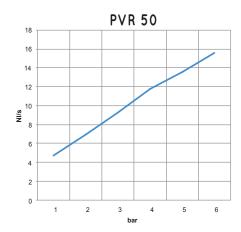

GENERATORI DI VUOTO REGOLABILI CONVEYOR PVR 25 e PVR 50

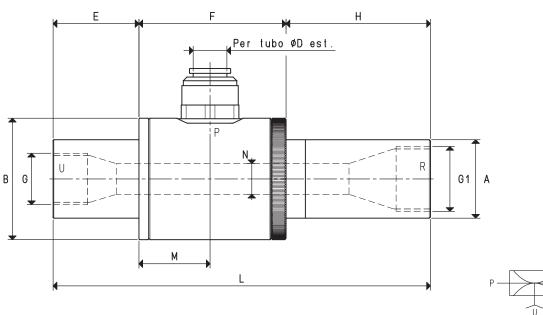

Quantita' di aria aspirata (m³/h) alle diverse pressioni di alimentazione (bar)



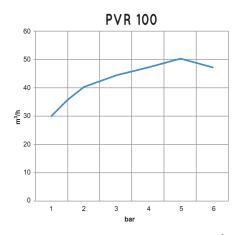

Quantita' di aria soffiata (m³/h) alle diverse pressioni di alimentazione (bar)

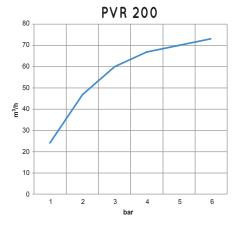



Grado di vuoto (-Kpa) alle diverse pressioni di alimentazione (bar)

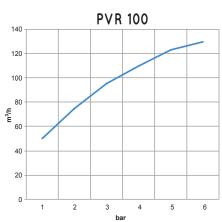

Consumo di aria (NI/s) alle diverse pressioni di alimentazione (bar)

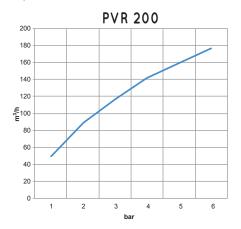
P=CONNESSIONE ARIA COMPRES	SSA R=S	CARICO U=CONNESSIONE VUOTO	
Art.		PVR 100	PVR 200
Max quantità di aria aspirata a 5 bar	m³/h	50	72
Max quantità di aria soffiata a 6 bar	m³/h	129	177
Massimo grado di vuoto	-KPa	75	70
Pressione finale	mbar ass.	250	300
Max pressione di alimentazione	bar	6	6
Consumo di aria a 6 bar	NI/s	22.7	28.3
Temperatura di utilizzo	°C	-20 / +80	-20 / +80
Livello di rumorosità	dB(A)	100	104
Peso	g	430	550
A	Ø	32	38
В	Ø	50	57
D	Ø	10	12
E		35	35
F		60	60
G	Ø	G1/2"	G3/4"
G 1	Ø	G3/4"	G1"
Н		55	77
L		150	172
M		28	28
N	Ø	12.5	16.0

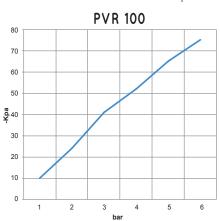

N.B. Tutti i valori di vuoto indicati in tabella sono validi alla normale pressione atmosferica di 1013 mbar ed ottenuti con una pressione di alimentazione costante.

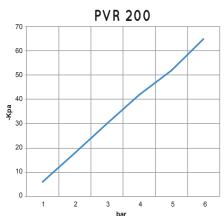

Aggiungendo all'articolo la lettera I, il generatore viene fornito in acciaio inox (Esempio: PVR 100 I).

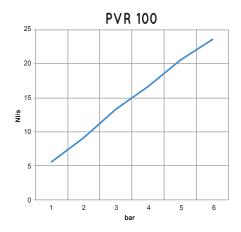
L'alimentazione dei generatori di vuoto, deve essere effettuata con aria compressa non lubrificata, filtrazione 5 micron, secondo norma ISO 8573-1 classe 4.

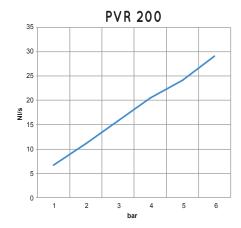

GENERATORI DI VUOTO REGOLABILI CONVEYOR PVR 100 e PVR 200


Quantita' di aria aspirata (m³/h) alle diverse pressioni di alimentazione (bar)



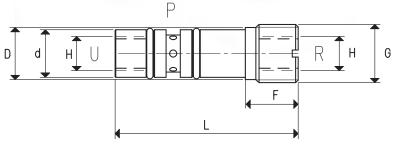

Quantita' di aria soffiata (m³/h) alle diverse pressioni di alimentazione (bar)



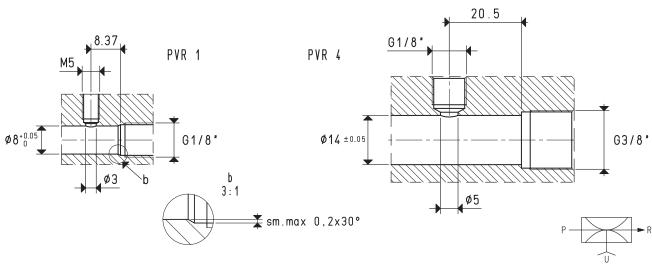

Grado di vuoto (-Kpa) alle diverse pressioni di alimentazione (bar)

Consumo di aria (NI/s) alle diverse pressioni di alimentazione (bar)

GENERATORI DI VUOTO A CARTUCCIA PVR 1 e PVR 4


Questi piccoli generatori di vuoto a cartuccia, sono integrabili direttamente sugli organi di presa delle macchine per il packaging.

La massima resa la offrono alle basse pressioni dell'aria compressa di utilizzo, 2-3 bar, offrendo valori di vuoto fino a -72 KPa e portate comprese tra $1 \text{ e } 4 \text{ m}^3/\text{h}$.


La loro particolare conformazione consente l'aspirazione di polveri o piccoli residui di lavorazione, senza creare problemi di intasamento. Sono realizzati, di serie, in alluminio anodizzato ma, a richiesta, possono essere forniti anche in acciaio inov

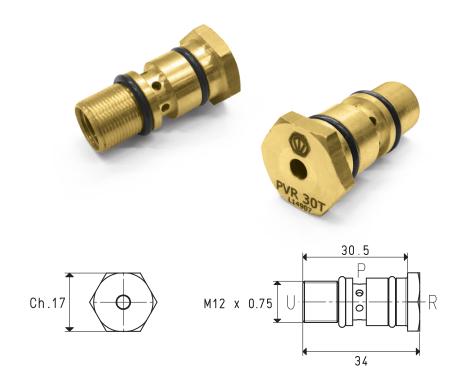
REALIZZAZIONE SEDI PER INSERIMENTO CARTUCCE

Art.			PVR 1		PV	/R 4
Quantità di aria aspirata	m³/h	0.6	0.8	0.9	2.7	3.3
Massimo grado di vuoto	-KPa	19	41	60	30	72
Pressione finale	mbar ass.	810	590	400	700	280
Pressione di alimentazione	bar	1	2	3	1	2.5
Consumo di aria	NI/s	0.3	0.5	0.6	1.7	2.9
Temperatura di utilizzo	°C			-10 / +80		-10 / +80
Livello di rumorosità	dB(A)			68		80
Peso	g			4		16
i	Ø			7.8		13.5
D	Ø			8.7		14.8
L				26		52
F				9.3		15
G	Ø			G1/8"		G3/8"
Н	Ø			M5		G1/8"

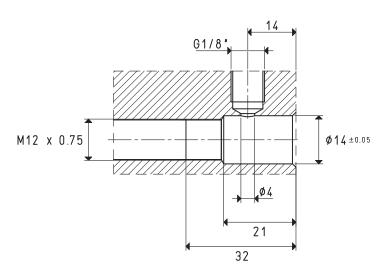
N.B. Tutti i valori di vuoto indicati in tabella sono validi alla normale pressione atmosferica di 1013 mbar ed ottenuti con una pressione di alimentazione costante.

Aggiungendo all'articolo la lettera I, il generatore viene fornito in acciaio inox (Esempio: PVR I).

L'alimentazione dei generatori di vuoto, deve essere effettuata con aria compressa non lubrificata, filtrazione 5 micron, secondo norma ISO 8573-1 classe 4.


GENERATORE DI VUOTO A CARTUCCIA PVR 3 OT

Anche la realizzazione di questo generatore di vuoto a cartuccia, si è resa necessaria per soddisfare la richiesta di apparecchi sempre più piccoli e performanti nel settore del packaging.


La pressione di alimentazione dell'aria compressa è compresa tra 1 e 3 bar, mentre il valore massimo del grado di vuoto è di -52 KPa, con portata di 2,6 m³/h.

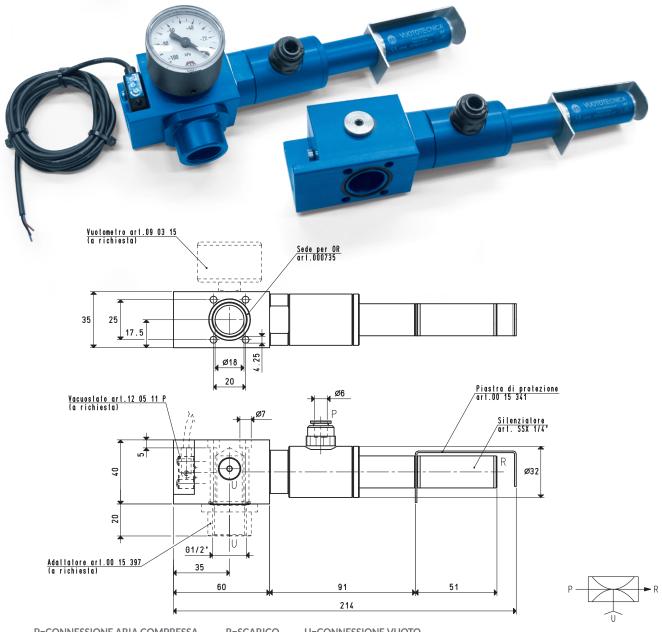
Anche la conformazione di guesti generatori, come i precedenti descritti, consente l'aspirazione di polveri e piccoli sfridi di lavorazione, senza problemi di intasamento.

Di serie, sono realizzati in ottone, ma su richiesta possono essere forniti anche in metalli diversi.

REALIZZAZIONE SEDE PER INSERIMENTO CARTUCCIA

	1.6
)	47
0	530
ļ	5
1	3.6

Art.				PVR 3 OT		
Quantità di aria aspirata	m³/h	2.2	2.6	2.6	2	1.6
Massimo grado di vuoto	-KPa	21	37	52	50	47
Pressione finale	mbar ass.	790	630	480	500	530
Pressione di alimentazione	bar	1	2	3	4	5
Consumo di aria	NI/s	1.25	1.8	2.4	3.1	3.6
Temperatura di utilizzo	°C			-10 / +60		
Livello di rumorosità	dB(A)			78		
Peso	g			60		

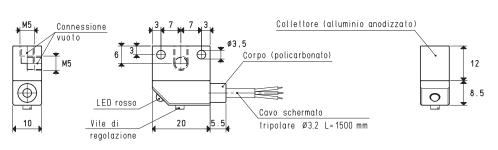

N.B. Tutti i valori di vuoto indicati in tabella sono validi alla normale pressione atmosferica di 1013 mbar ed ottenuti con una pressione di alimentazione costante. L'alimentazione dei generatori di vuoto, deve essere effettuata con aria compressa non lubrificata, filtrazione 5 micron, secondo norma ISO 8573-1 classe 4.

GENERATORE DI VUOTO CONVEYOR PVR 25 MS, CON SUPPORTO DI FISSAGGIO ALLE VENTOSE

La particolare conformazione di questo generatore di vuoto a flusso rettilineo, consente l'asservimento di ventose, specialmente in presenza di abbondanti quantitativi di polveri, liquidi, segature, di origini varie e trucioli, senza interferenze. Può raggiungere un grado di vuoto pari a -70KPa, una capacità d'aspirazione di circa 10 m³/h, con una pressione d'alimentazione di 3 bar.

Il supporto di cui è dotato, consente il fissaggio alle ventose piane, a partire da quelle Ø 200 mm, mentre un apposito adattatore, fornibile su richiesta, permette di fissare il generatore a distanza. Sullo scarico dell'aria aspirata, è installato un silenziatore "free-flow", ad alto abbattimento sonoro, dotato di apposita protezione di sicurezza, per impedire la dispersione delle impurità solide aspirate, nell'ambiente di lavoro. Sempre su richiesta, è possibile fornire un microvacuostato digitale art. 12 05 11 P, per il controllo del grado di vuoto all'interno della ventosa e un vuotometro art. 09 03 15, per la lettura diretta del valore. Una buona filtrazione dell'aria compressa d'alimentazione, è sufficiente a eliminare qualsiasi forma di manutenzione. Il loro impiego è consigliato in modo particolare sulle ventose per la presa di marmi e graniti, laterizi, lamiere arrugginite, tavole di legno grezze e quant'altro presenti superfici di presa molto sporche.

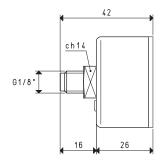
P=CONNESSIONE ARIA CO	MPRESSA R=SCARICO	U=CONNESSIONE VUC	010		
Art.			PVR 25 MS		
Quantità di aria aspirata	m³/h	6.4	9.4	9.6	
Massimo grado di vuoto	-KPa	12	45	70	
Pressione finale	mbar ass.	880	550	300	
Pressione di alimentazione	bar	1	2	3	
Consumo di aria	NI/s	8.2	10.87	12.49	


N.B. Tutti i valori di vuoto indicati in tabella sono validi alla normale pressione atmosferica di 1013 mbar ed ottenuti con una pressione di alimentazione costante.

L'alimentazione dei generatori di vuoto, deve essere effettuata con aria compressa non lubrificata, filtrazione 5 micron, secondo norma ISO 8573-1 classe 4.

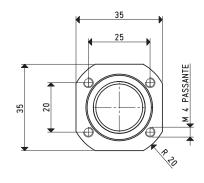
ACCESSORI E RICAMBI A RICHIESTA PER GENERATORE DI VUOTO PVR 25 MS

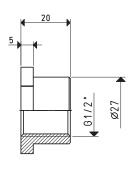
Microvacuostato digitale



Art.	Descrizione
12 05 11 P	Microvacuostato digitale

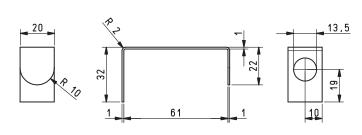
Vuotometro





Art.	Scala KPa	Doppia Scala	Errore della scala ammesso	Temperatura di impiego	Note	Materiale cassa	Peso g
09 03 15	0 ÷ -100		2.5%	-10 °C ÷ +50 °C			52

Adattatore filettato per bocca d'aspirazione art. 00 15 397



RICAMBI

Protezione di sicurezza per silenziatore di scarico SSX 1/4" art. 00 15 341

8

ACCESSORI PER GENERATORI DI VUOTO REGOLABILI CONVEYOR

Il livello di rumorosità dei generatori di vuoto regolabili Conveyor, sempre piuttosto elevato, può essere notevolmente mitigato da un adeguato silenziatore, avvitato sulla connessione di scarico dell'aria. Su specifica richiesta, possono essere forniti silenziatori della serie SSX, idonei ad ogni generatore di vuoto Conveyor.

Nella tabella sottostante sono riportati i codici dei silenziatori relativi ai vari generatori di vuoto.

PVR 25 con silenziatore di scarico SSX 1/4" e ventosa 08 53 35 S

PVR 50 con silenziatore di scarico 2SSX 1/2"

PVR 100 con silenziatore di scarico SSX 3/4"

Art.	Silenziatore art.	Riduzione rumorosità dB(A)	Silenziatore art.	Riduzione rumorosità dB(A)
PVR 25	SSX 1/4"	-13	2SSX 1/4"	-20
PVR 50	SSX 1/2"	-13	2SSX 1/2"	-20
PVR 100	SSX 3/4"	-13	2SSX 3/4"	-20
PVR 200	SSX 1"	-13	2SSX 1"	-20

GENERATORI DI FLUSSO VACUUM JET

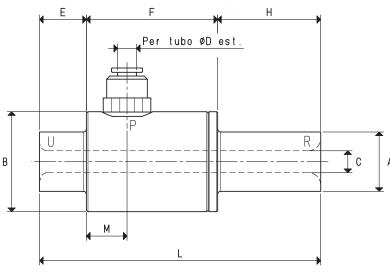
Principio di funzionamento

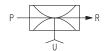
L'aria compressa di alimentazione, insufflata in una camera anulare concentrica all'apparecchio, confluisce ad elevatissima velocità verso il centro del tubo principale, formando un effetto ciclonico.

Quest'ultimo ha la proprietà di creare una depressione all'interno dell'apparecchio e di indurre un grande volume d'aria verso l'uscita del medesimo.

Variando la pressione dell'aria d'alimentazione varierà, di conseguenza, la depressione e la quantità d'aria aspirata.

Caratteristiche


La particolare conformazione dei generatori di flusso ed il loro principio di funzionamento a flusso rettilineo, consentono l'aspirazione ed il trasferimento di prodotti di diversa natura, senza interferenze. I Vacuum Jet, infatti, sono adatti per il trasferimento di polveri, granulati, segatura, granaglie, trucioli metallici, prodotti alimentari liquidi o secchi, ecc.; oppure, per aspirare fumi, nebbie refrigeranti, condense d'acqua o d'olio, ecc.

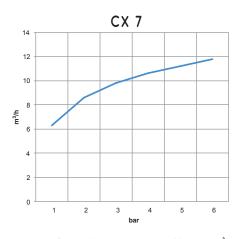

L'assenza di parti in movimento ne consente l'uso continuo, senza sviluppo di calore. Non necessitano di corrente elettrica, pertanto, possono essere impiegati in ambienti di lavoro con pericolo d'incendio o di deflagrazione.

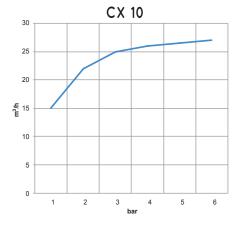
Sono disponibili in alluminio anodizzato e in acciaio inox.

Per le loro caratteristiche, è sufficiente una buona filtrazione dell'aria compressa d'alimentazione per eliminare qualsiasi forma di manutenzione.

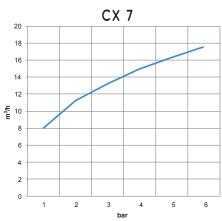
P=CONNESSIONE ARIA COMPRE	SSA R=SCAF	RICO U=CONNESSIONE VUOTO	
Art.		CX 7	CX 10
Max quantità di aria aspirata a 6 bar	m³/h	12.0	28.0
Max quantità di aria soffiata a 6 bar	m³/h	17.6	36.2
Massimo grado di vuoto	-KPa	15	22
Pressione finale	mbar ass.	850	780
Max pressione di alimentazione	bar	6	6
Consumo di aria a 6 bar	NI/s	1.5	2.3
Temperatura di utilizzo	°C	-20 / +80	-20 / +80
Livello di rumorosità	dB(A)	75	84
Peso	g	110	104
A	Ø	19	19
В	Ø	32	32
C	Ø	7	10
D	Ø	6	6
E		15	15
F		42	42
Н		33	33
L		90	90
M		13	13

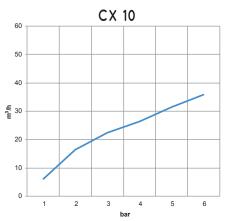
N.B. Tutti i valori di vuoto indicati in tabella sono validi alla normale pressione atmosferica di 1013 mbar ed ottenuti con una pressione di alimentazione costante.

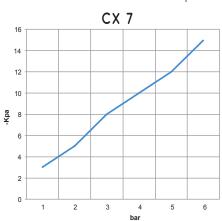

Aggiungendo all'articolo la lettera I, il generatore viene fornito in acciaio inox (Esempio: CX 10 I).

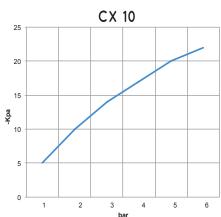

L'alimentazione dei generatori di vuoto, deve essere effettuata con aria compressa non lubrificata, filtrazione 5 micron, secondo norma ISO 8573-1 classe 4.

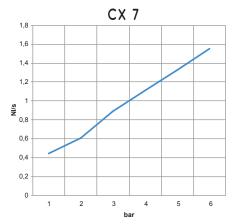
GENERATORI DI FLUSSO VACUUM JET CX 7 e CX 10

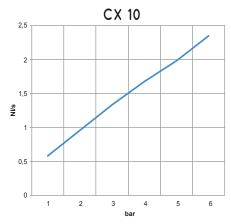


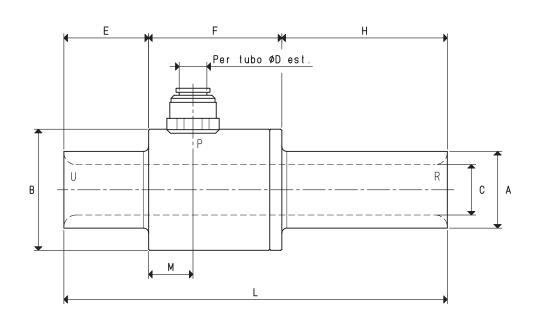

Quantita' di aria aspirata (m³/h) alle diverse pressioni di alimentazione (bar)

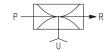


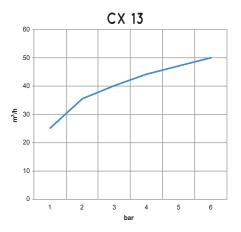

Quantita' di aria soffiata (m³/h) alle diverse pressioni di alimentazione (bar)

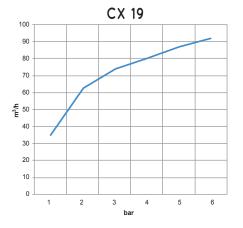



Grado di vuoto (-Kpa) alle diverse pressioni di alimentazione (bar)

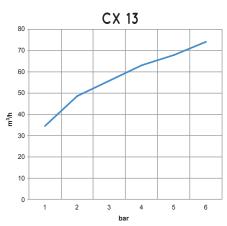

Consumo di aria (NI/s) alle diverse pressioni di alimentazione (bar)

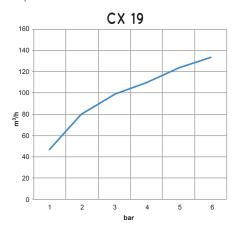


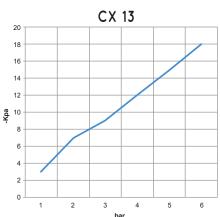

P=CONNESSIONE ARIA COMPRES	SSA R=SCARICO	U=CONNESSIONE VUOTO	
Art.		CX 13	CX 19
Max quantità di aria aspirata a 6 bar	m³/h	50.0	92.0
Max quantità di aria soffiata a 6 bar	m³/h	73.7	134.0
Massimo grado di vuoto	-KPa	18	16
Pressione finale	mbar ass.	820	840
Max pressione di alimentazione	bar	6	6
Consumo di aria a 6 bar	NI/s	6.6	11.6
Temperatura di utilizzo	°C	-20 / +80	-20 / +80
Livello di rumorosità	dB(A)	88	92
Peso	g	280	500
A	Ø	25	32
В	Ø	45	54
С	Ø	13	19
D	Ø	8	10
E		30	43
F		55	65
Н		55	82
L		140	190
M		18	22

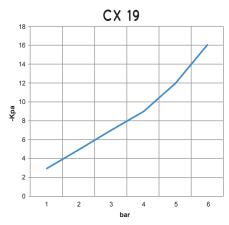

N.B. Tutti i valori di vuoto indicati in tabella sono validi alla normale pressione atmosferica di 1013 mbar ed ottenuti con una pressione di alimentazione costante.

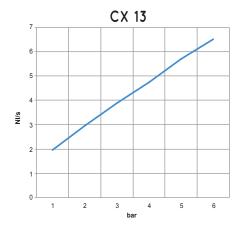
Aggiungendo all'articolo la lettera I, il generatore viene fornito in acciaio inox (Esempio: CX 13 I).

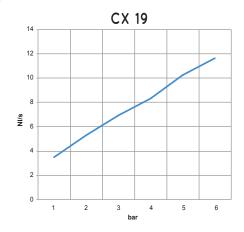

L'alimentazione dei generatori di vuoto, deve essere effettuata con aria compressa non lubrificata, filtrazione 5 micron, secondo norma ISO 8573-1 classe 4.

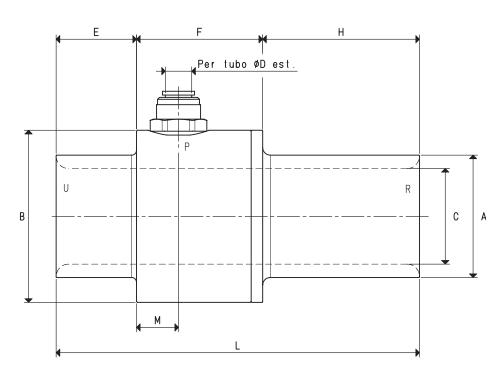

Sono disponibili i disegni 3D sul sito vuototecnica.net




Quantita' di aria soffiata (m³/h) alle diverse pressioni di alimentazione (bar)



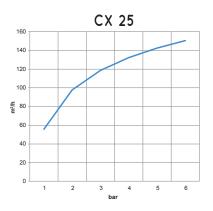

Grado di vuoto (-Kpa) alle diverse pressioni di alimentazione (bar)

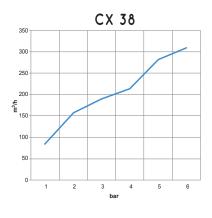

Consumo di aria (NI/s) alle diverse pressioni di alimentazione (bar)

P=CONNESSIONE ARIA COMPRES	SSA R=SCARIC	O U=CONNESSION	IE VUOTO	
Art.		CX 25	CX 38	CX 50
Max quantità di aria aspirata a 6 bar	m³/h	150	310	405
Max quantità di aria soffiata a 6 bar	m³/h	210	400	525
Massimo grado di vuoto	-KPa	13	10	8
Pressione finale	mbar ass.	870	900	920
Max pressione di alimentazione	bar	6.0	6.0	6.0
Consumo di aria a 6 bar	NI/s	16.6	25.0	33.3
Temperatura di utilizzo	°C	-20 / +80	-20 / +80	-20 / +80
Livello di rumorosità	dB(A)	100	103	103
Peso	g	560	800	1090
A	Ø	38	51	64
В	Ø	60	75	90
С	Ø	25	38	50
D	Ø	10	12	16
E		42	42	42
F		66	66	66
Н		82	82	82
L		190	190	190
M		22	22	22

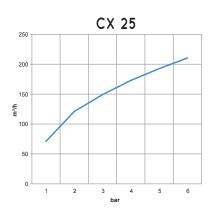
N.B. Tutti i valori di vuoto indicati in tabella sono validi alla normale pressione atmosferica di 1013 mbar ed ottenuti con una pressione di alimentazione costante.

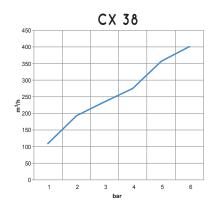
Aggiungendo all'articolo la lettera I, il generatore viene fornito in acciaio inox (Esempio: CX 38 I).

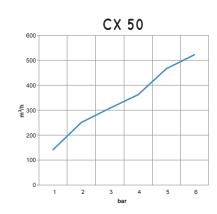

L'alimentazione dei generatori di vuoto, deve essere effettuata con aria compressa non lubrificata, filtrazione 5 micron, secondo norma ISO 8573-1 classe 4.

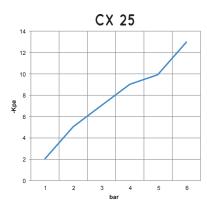

Rapporti di trasformazione: N (newton) = Kg x 9.81 (forza di gravità); inch = $\frac{mm}{25.4}$; pounds = $\frac{g}{453.6}$ = $\frac{Kg}{0.4536}$

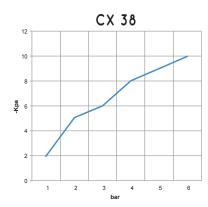
GENERATORI DI FLUSSO VACUUM JET CX 25, CX 38 e CX 50

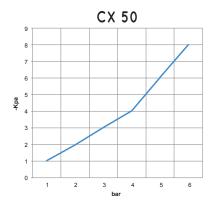

Quantita' di aria aspirata (m³/h) alle diverse pressioni di alimentazione (bar)

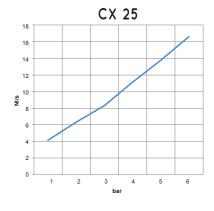


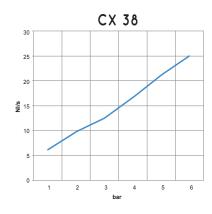


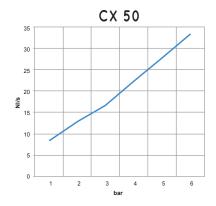

Quantita' di aria soffiata (m³/h) alle diverse pressioni di alimentazione (bar)






Grado di vuoto (-Kpa) alle diverse pressioni di alimentazione (bar)





Consumo di aria (NI/s) alle diverse pressioni di alimentazione (bar)

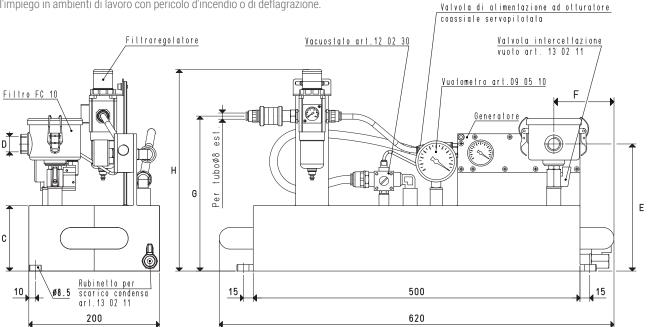
MINIDEPRESSORI PNEUMATICI DOP 06 e DOP 10

I minidepressori pneumatici sono delle piccole unità autonome per la produzione di vuoto, alimentati esclusivamente ad aria compressa, caratterizzati dalle loro ridotte dimensioni.

Sono costituiti da:

- Un piccolo serbatoio in lamiera d'acciaio saldata.
- Una valvola a manicotto per l'intercettazione dell'aria compressa.
- Un regolatore di pressione con filtro e manometro.
- Un generatore di vuoto funzionante ad aria compressa.
- Una valvola ad azionamento pneumatico per l'alimentazione del

generatore di vuoto, gestita dal vacuostato.


- Un vacuostato pneumatico per la regolazione del grado di vuoto.
- Un vuotometro per la lettura diretta del grado di vuoto.
- Una valvola manuale per l'intercettazione del vuoto.
- Un filtro d'aspirazione con cartuccia in carta serie FC.
- Un rubinetto per lo spurgo della condensa dal serbatoio.
 Il mantenimento del grado di vuoto nel serbatoio, preimpostato

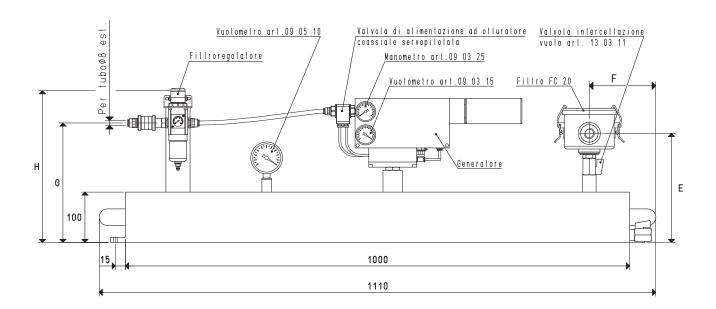
con il vacuostato, è completamente automatico. I minidepressori pneumatici sono adatti ad attrezzare piccole

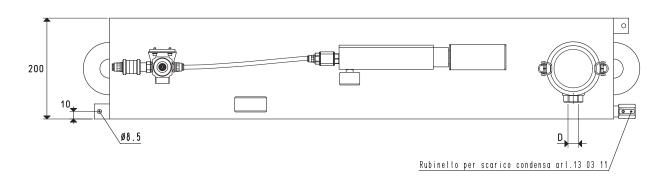
I minidepressori pneumatici sono adatti ad attrezzare piccole unità di lavoro, fisse o mobili, che necessitano di vuoto, quali:

- Carrelli con ventose per il fissaggio e trasporto di vetri e cristalli.
- Sistemi di staffaggio a depressione per la manutenzione degli sci, per la foratura o pantografatura dei marmi, per la lucidatura di oggetti in peltro, rame, o argento, ecc.
- Paranchi a ventose per il sollevamento di televisori ed elettrodomestici in genere, per l'installazione di vetri nei serramenti, per l'alimentazione di lamiere alle presse, ecc. I minidepressori pneumatici non necessitano di corrente elettrica, ma solamente di aria compressa a $4 \div 6$ bar di pressione; per questa loro caratteristica ne è consigliato l'impiego in ambienti di lavoro con pericolo d'incendio o di deflagrazione.

Art.	Serbatoio	Generatore	Apparecchiatura pneumatica	С	D	E	F	G	Н	L	Peso
	Litri	art.	art.		Ø						Kg
DOP 06 PVP 12 MX	6	PVP 12 MX	DOP 20 90	60	G3/8"	150	95	180	270	620	12.7
DOP 06 PVP 25 MX	6	PVP 25 MX	DOP 20 90	60	G3/8"	150	95	180	270	620	13.0
DOP 10 PVP 12 MX	10	PVP 12 MX	DOP 20 90	100	G3/8"	210	95	240	310	620	12.9
DOP 10 PVP 25 MX	10	PVP 25 MX	DOP 20 90	100	G3/8"	210	95	240	310	620	13.2

N.B. L'alimentazione del generatore di vuoto, deve essere effettuata con aria compressa non lubrificata, filtrazione 5 micron, secondo norma ISO 8573-1 classe 4.


MINIDEPRESSORI PNEUMATICI DOP 20



Questo minidepressore si differenzia dai precedenti, oltre che per il volume del serbatoio, anche per il generatore di vuoto installato.

Il generatore di vuoto della serie PVP... MDX ES, infatti, è dotato del dispositivo di risparmio energetico, che consente di mantenere automaticamente il grado di vuoto preimpostato, all'interno del serbatoio. Gli altri accessori installati, ad esclusione del vacuostato e della valvola ad azionamento pneumatico per l'alimentazione del generatore di vuoto, sono gli stessi installati sui DOP 06 e DOP 10. La loro destinazione d'uso è la stessa dei minidepressori precedentemente descritti.

Art.	Serbatoio	Generatore	Apparecchiatura pneumatica	D	E	F	G	Н	L	Peso
	Litri	art.	art.	Ø						Kg
DOP 20 PVP 25 MDX	20	PVP 25 MDX ES	DOP 20 90	G1/2"	225	135	270	340	1110	20.6
DOP 20 PVP 35 MDX	20	PVP 35 MDX ES	DOP 20 90	G1/2"	225	135	270	340	1110	20.7

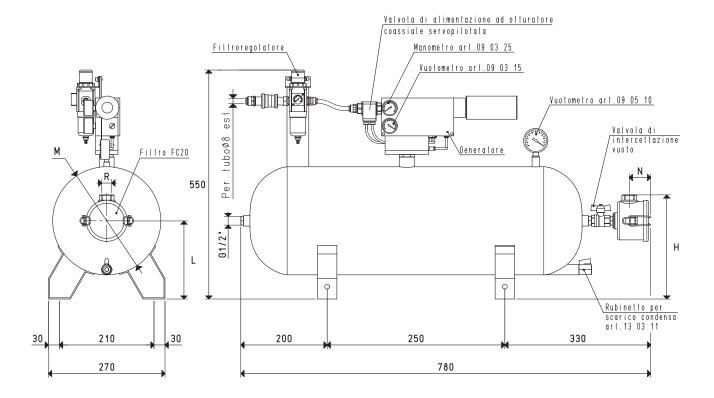
N.B. L'alimentazione del generatore di vuoto, deve essere effettuata con aria compressa non lubrificata, filtrazione 5 micron, secondo norma ISO 8573-1 classe 4.

DEPRESSORI PNEUMATICI DOP 25, DOP 50 e DOP 100

I depressori pneumatici sono delle unità autonome per la produzione di vuoto, alimentati esclusivamente ad aria compressa.

Sono costituiti da:

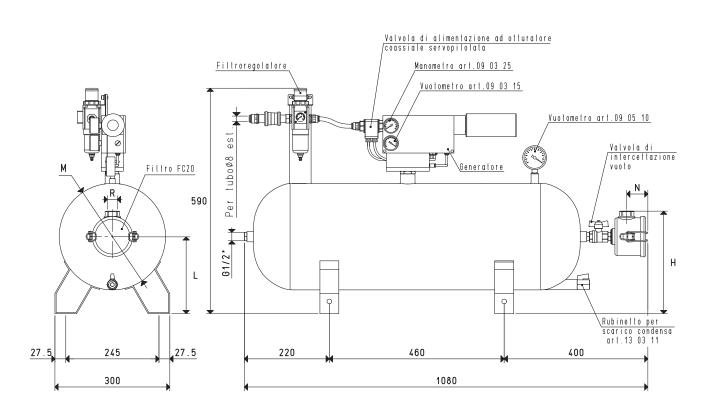
- Un serbatoio in lamiera d'acciaio saldata.
- Un generatore di vuoto funzionante ad aria compressa della serie PVP ... MDX ES, dotato di dispositivo di risparmio energetico.
- Un vuotometro per la lettura diretta del grado di vuoto.
- Una valvola manuale per l'intercettazione del vuoto.
- Un filtro d'aspirazione con cartuccia in carta, serie FC.
- Un regolatore di pressione con filtro e manometro.
- Una valvola a manicotto per l'intercettazione dell'aria compressa.
- Un rubinetto per lo spurgo della condensa dal serbatoio.


Il mantenimento del grado di vuoto nel serbatoio, preimpostato con il vacuostato integrato nel generatore, è completamente automatico.

I depressori pneumatici vengono normalmente impiegati per la movimentazione di carichi particolarmente pesanti o di valore, poiché anche in mancanza di alimentazione improvvisa, consentono alle ventose di rimanere in presa ancora per un certo tempo (variabile in funzione della capacità del serbatoio). Sono anche consigliati nell'allacciamento di più macchine utilizzatrici, per centralizzare il vuoto.

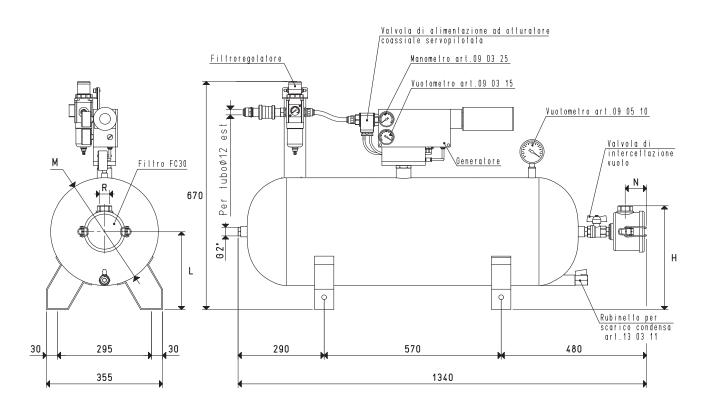
In entrambi i casi l'impiego del depressore risulta particolarmente vantaggioso sotto il profilo del risparmio energetico, poiché il generatore entra in funzione solamente quando è richiesto il vuoto dalle macchine utilizzatrici.

I depressori pneumatici non necessitano di corrente elettrica, ma solamente di aria compressa a $4 \div 6$ bar di pressione; per questa loro caratteristica, ne è consigliato l'impiego in ambienti di lavoro con pericolo d'incendio o di deflagrazione.



Art.	Serbatoio	Generatore	Apparecchiatura pneumatica	Н	L	М	N	R	Peso
	Litri	art.	art.			Ø		Ø	Kg
DOP 25 PVP 25 MDX	25	PVP 25 MDX ES	DOP 20 90	225	185	240	51	G1/2"	15.9
DOP 25 PVP 35 MDX	25	PVP 35 MDX ES	DOP 20 90	225	185	240	51	G1/2"	16.0

N.B. L'alimentazione del generatore di vuoto, deve essere effettuata con aria compressa non lubrificata, filtrazione 5 micron, secondo norma ISO 8573-1 classe 4.



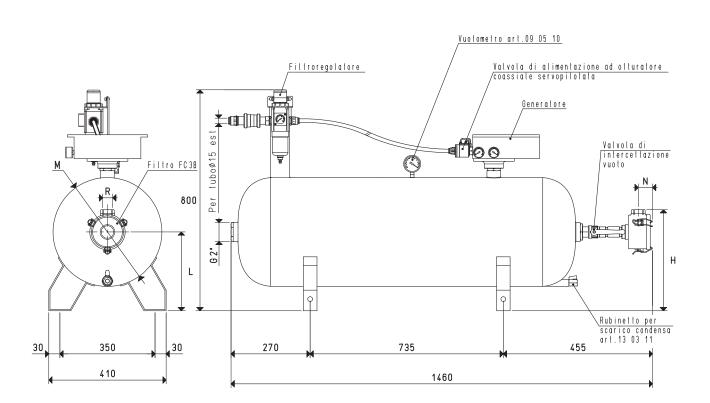
Art.	Serbatoio	Generatore	Apparecchiatura pneumatica	Н	L	М	N	R	ø est. tubo	Peso
	Litri	art.	art.			Ø		Ø	Ø	Kg
DOP 50 PVP 50 MDX	50	PVP 50 MDX ES	DOP 20 90	245	205	280	51	G1/2"	8	18.9
DOP 50 PVP 60 MDX	50	PVP 60 MDX ES	DOP 50 90	245	205	280	51	G1/2"	12	19.7

N.B. L'alimentazione del generatore di vuoto, deve essere effettuata con aria compressa non lubrificata, filtrazione 5 micron, secondo norma ISO 8573-1 classe 4.

Art.	Serbatoio	Generatore	Apparecchiatura pneumatica	Н	L	М	N	R	Peso
	Litri	art.	art.			Ø		Ø	Kg
DOP 100 PVP 75 MDX	100	PVP 75 MDX ES	DOP 50 90	300	255	350	41	G1"	31.0

N.B. L'alimentazione del generatore di vuoto, deve essere effettuata con aria compressa non lubrificata, filtrazione 5 micron, secondo norma ISO 8573-1 classe 4.

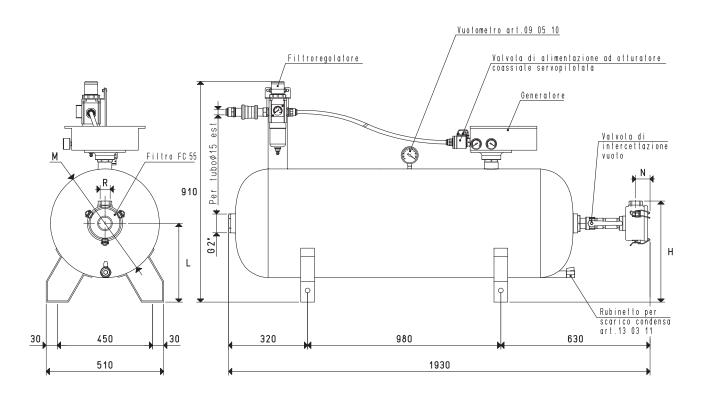
DEPRESSORI PNEUMATICI DOP 150 e DOP 300


I depressori pneumatici sono delle unità autonome atte alla produzione di vuoto, alimentati esclusivamente da aria compressa. Sono costituiti da:

- Un serbatoio in lamiera d'acciaio saldata.
- Un generatore di vuoto funzionante ad aria compressa, della serie PVP ... MDR ES, dotato di dispositivo di risparmio energetico.
- Un vuotometro per la lettura diretta del grado di vuoto nel serbatoio.
- Una valvola manuale per l'intercettazione del vuoto.
- Un filtro d'aspirazione con cartuccia in carta, serie FC.
- Un regolatore di pressione con filtro.
- Una valvola a manicotto per l'intercettazione dell'aria compressa.
- Un rubinetto per lo spurgo della condensa dal serbatoio.

Il mantenimento del grado di vuoto nel serbatoio, preimpostato con il vacuostato integrato nella valvola pneumatica d'alimentazione ad otturatore coassiale, è completamente automatico. I depressori pneumatici sono normalmente impiegati per la movimentazione di carichi particolarmente pesanti o di valore, poiché, anche in mancanza di alimentazione improvvisa, consentono alle ventose di rimanere in presa ancora per un certo tempo (variabile in funzione della capacità del serbatoio). Sono anche consigliati per centralizzare il vuoto, per l'asservimentodi più macchine utilizzatrici. In entrambi i casi l'impiego del depressore risulta particolarmente vantaggioso sotto il profilo del risparmio energetico, poiché il generatore entra in funzione solamente quando è richiesto il vuoto dalle macchine utilizzatrici.

I depressori pneumatici non necessitano di energia elettrica, ma solamente di aria compressa a $4 \div 6$ bar di pressione; per questa loro caratteristica, ne è consigliato l'impiego in ambienti di lavoro con pericolo d'incendio o di deflagrazione.



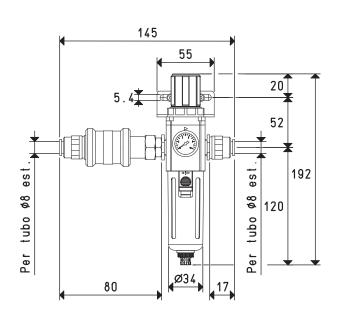
Art.	Serbatoio	Generatore	Apparecchiatura pneumatica	Н	L	М	N	R	Peso
	Litri	art.	art.			Ø		Ø	Kg
DOP 150 PVP 150 MD	150	PVP 150 MDR ES	DOP 150 90	360	280	400	41	G1"1/2	40.2

N.B. L'alimentazione del generatore di vuoto, deve essere effettuata con aria compressa non lubrificata, filtrazione 5 micron, secondo norma ISO 8573-1 classe 4.

Art.	Serbatoio	Generatore	Apparecchiatura pneumatica	Н	L	М	N	R	Peso
	Litri	art.	art.			Ø		Ø	Kg
DOP 300 PVP 300 MD	300	PVP 300 MDR ES	DOP 150 90	440	340	500	45	G2"	41.2

N.B. L'alimentazione del generatore di vuoto, deve essere effettuata con aria compressa non lubrificata, filtrazione 5 micron, secondo norma ISO 8573-1 classe 4.

APPARECCHIATURE PNEUMATICHE PER L'ALIMENTAZIONE DEI MINIDEPRESSORI DOP 06, DOP 10, DOP 20 E DEPRESSORI DOP 25, DOP 50, DOP 100, DOP 150 e DOP 300

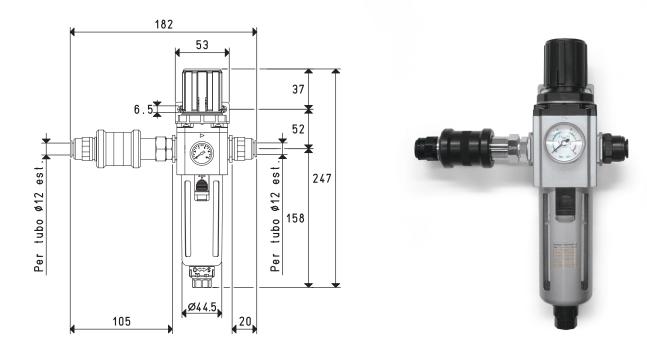

L'apparecchiatura pneumatica dei minidepressori e dei depressori, è dimensionata in modo tale da garantire la giusta quantità dell'aria compressa d'alimentazione ai generatori di vuoto installati su di essi, ad una pressione corretta, costante e continuativa.

E' costituita da:

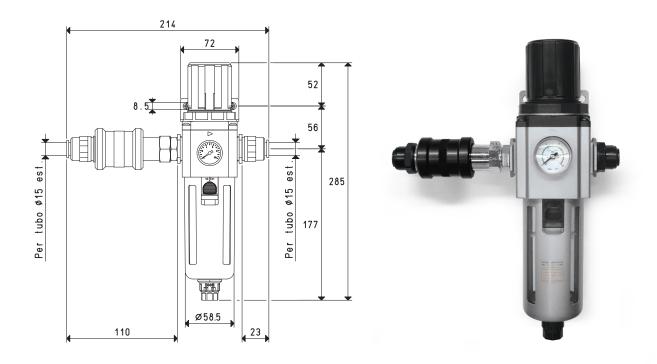
- Un regolatore di pressione con filtro e manometro, per la regolazione dell'aria compressa d'alimentazione.
- Una staffa metallica per il fissaggio del regolatore di pressione al supporto.
- Una valvola a corsoio per l'intercettazione dell'aria compressa.
- Due raccordi rapidi per il collegamento alla linea dell'aria d'alimentazione e al generatore di vuoto.

Sono disponibili in diverse grandezze, a seconda del generatore di vuoto installato sul minidepressore o sul depressore.

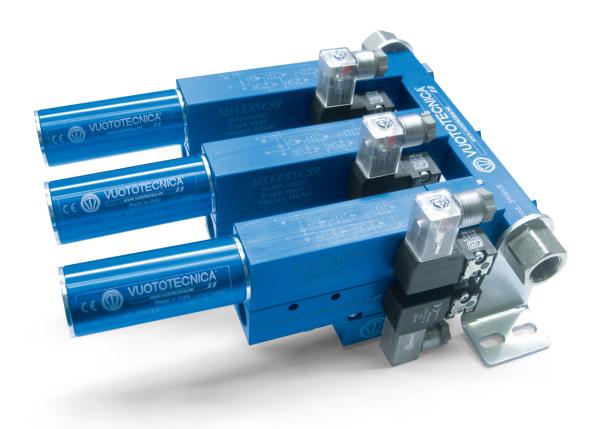
APPARECCHIATURA PNEUMATICA PER L'ALIMENTAZIONE DEI MINIDEPRESSORI DOP 06, DOP 10 e DOP 20



Art.	Peso Kg	Adatta per generatore art.			
DOP 20 90	0.36	PVP 12 MX - PVP 25 MX - PVP 25 MDX ES - PVP 35 MDX ES - PVP 50 MDX ES			



APPARECCHIATURA PNEUMATICA PER L'ALIMENTAZIONE DEI DEPRESSORI DOP 25, DOP 50 e DOP 100


Art.	Peso Kg	Adatta per generatore art.
DOP 50 90	0.72	PVP 60 MDX ES - PVP 75 MDX ES

APPARECCHIATURA PNEUMATICA PER L'ALIMENTAZIONE DEI DEPRESSORI DOP 150 e DOP 300

Art.	Peso Kg	Adatta per generatore art.
DOP 150 90	1.2	PVP 150 MDR - PVP 300 MDR

3MSVE

PVP 750 MDV - COS1