DPRELIMAX

© PNEUMAX SOLUTIONS FOR AUTOMATION CONTROL
 evo catalogue

Pneumax solutions for automation control EVO Catalogue

Pneumax solenoid valves are available as the EVO version, coupled with multiprotocol modules/electronics
from the PX range.

3 TECHNOLOGIES

Pneumatic technology

Electric actuation
Fluid control

Through a network of subsidiaries and exclusive distributors, Pneumax is present in more than $\mathbf{5 0}$ countries around the world, supporting customers in all phases of the supply process, from pre-sales application analysis to after-sales service.

WE SPEAK ミソー

 A unique control system，a wide range of solutions

All the Pneumax solenoid valves manifold are now available in the EVO version，integrating the new multiprotocol module PX Series，designed to manage and command pneumatic and electropneumatic components and to offer extreme flexibility by interfacing with the most common communication protocols．

2700 EVO Series

Wide range of fieldbus protocols

Solenoid valves manifold

Series EVO

Index
 Series EVO

Series PX

Configurator	2	Inputs and outputs modules	
Configuration examples	3	8 M8 \& M12 digital inputs module kits	13
Accessories	4	8 M8 \& M12 digital outputs module kits	14
Module assembly instructions	5	32 digital inputs \& outputs module kits	15
Serial systems		(37 pin SUB-D connector)	
CANopen ${ }^{\text {® }}$ protocol node kit	6	Analogue inputs module kit M8	16
PROFIBUS DP protocol node kit	7	Analogue outputs module kit M8	17
EtherNet/IP protocol node kit	8	Pt100 inputs module kit	18
EtherCAT ${ }^{\text {® }}$ protocol node kit	9	Additional modules	
PROFINET IO RT protocol node kit	10	Additional power supply module kit	19
CC-Link IE Field Basic protocol node kit	11	Signal management	20
IO-Link protocol interface kit	12	Connectors	21

Series 3000 EVO

Serial systems	
CANopen ${ }^{\text {® }}$ protocol node	59
PROFIBUS DP protocol node	60
EtherNet/IP protocol node	61
EtherCAT ${ }^{\text {® }}$ protocol node	62
PROFINET IO RT protocol node	63
CC-Link IE Field Basic protocolo node	64
IO-Link protocol interface	65
Inputs and outputs modules	
8 M 8 \& M12 digital inputs module kits	66
8 M8 \& M12 digital outputs module kits	67
32 digital inputs \& outputs module kits (37 pin SUB-D connector)	68
Analogue inputs module kit M8	69
Analogue outputs module kit M8	70
Pt100 inputs module kit	71
Additional modules	
Additional power supply module kit	72
Signal management	73
Connectors	74

Series 2200 Optyma-S EVO

Configurator 76
Installation specifications 80
Solenoid valves 82
Left Endplate / Right Endplate 84
Modular bases (2 places) 85
Accessories 86
Proportional technology accessories 87
Accessories 92
Series 2500 Optyma-F EVO

Configurator 97
Installation specifications 100
Solenoid valves 102
Left Endplate / Right Endplate / Modular base 104
Accessories 105
Series 2500 Optyma-T EVO

Configurator 110
Installation specifications 113

Solenoid valves	115

Left Endplate / Right Endplate / Modular base 117
Accessories 118

Series 2700 EVO

Configurator
124
Installation specifications 128
Module assembly instructions 130
Solenoid valves 131
Monitored solenoid valves 134
Solenoid valves for progressive start 137
Left Endplate / Right Endplate / Modular base 138
Accessories 139
EVO Electronics

	Multi-pin module	145
	Serial systems	
	CANopen ${ }^{\text {® }}$ protocol node kit	146
	PROFIBUS DP protocol node kit	147
	EtherNet/IP protocol node kit	148
	EtherCAT ${ }^{\text {® }}$ protocol node kit	149
	PROFINET IO RT protocol node kit	150
	CC-Link IE Field Basic protocol node kit	151
	IO-Link protocol interface kit	152
	Inputs and outputs modules	
	8 M 8 \& M12 digital inputs module kits	153
	8 M 8 \& M12 digital outputs module kits	154
	32 digital inputs \& outputs module kits	155
	(37 pin SUB-D connector)	
	Analogue inputs module kit M8	156
	Analogue outputs module kit M8	157
	Pt100 inputs module kit	158
	Additional modules	
	Additional power supply module kit	159
	Connectors	160
	Cables	161

Solenoid valves manifold

Series PX
paieumax

Series PX

SERIES PX MODULAR ELECTRONIC SYSTEM

- Maximum flexibility
- Digital and analogue I/O modules
- Stand alone solution connectable via SUB-D cable to all manifolds
- Manufactured in technopolymer
- Wide range of communication protocols

CANopen

Ethercat. ${ }^{*}$

FLEXIBILITY IN A COMPACT SPACE

Series PX modular electronic system has been designed to offer control and acquisition hardware for pneumatic and electric devices; it supports the most diffused communication protocols and can be configured with I/O modules, both digital and analog.
Series PX in stand alone version can be connected to every solenoid valves battery by using SUB-D connector, on the other hand Series PX can be directly connected to the following Pneumax solenoid valves series:

- Optyma S
- Optyma F
- Optyma T
- 2700
- 3000

Technopolymer bodies and sub-base and compact design has been studied to optimise room taken by the whole system, they make Series PX extremely light and guarantee maximum flexibility.
The ability to quickly and easily configure the system, the range of modules and accessories available meet at the best the specific application needs of many industrial sectors.

Configurator

Configurator

Electric connection accessories
 Without DIN rail adapter

G With DIN rail adapter

Number of repetitions per module

Indicate the number of repetitions of the same module
(no value for a single module)

Inputs module - Analogue / Digital	
D8	8 M8 digital inputs module
D12	8 M12 digital inputs module
D3	32 digital inputs SUB-D 37 poles
T1	2 analogue inputs 0-5V module (voltage signal)
T2	2 analogue inputs 0-10V module (voltage signal)
T3	4 analogue inputs 0-5V module (voltage signal)
T4	4 analogue inputs 0-10V module (voltage signal)
C1	2 analogue inputs 0-20mA module (current signal)
C2	2 analogue inputs 4-20mA module (current signal)
C3	4 analogue inputs 0-20mA module (current signal)
C4	4 analogue inputs 4-20mA module (current signal)
P1	2 Pt100 2 wires inputs module
P2	2 Pt100 3 wires inputs module
P3	2 Pt100 4 wires inputs module
P4	4 Pt100 2 wires inputs module
P5	4 Pt100 3 wires inputs module
P6	4 Pt100 4 wires inputs module
Outputs module - Analogue / Digital	
M8	8 M8 digital outputs module
M12	8 M12 digital outputs module
M3	32 digital outputs SUB-D 37 poles
V1	2 analogue outputs 0-5V module (voltage signal)
V2	2 analogue outputs 0-10V module (voltage signal)
V3	4 analogue outputs 0-5V module (voltage signal)
V4	4 analogue outputs 0-10V module (voltage signal)
L1	2 analogue outputs 0-20mA module (current signal)
L2	2 analogue outputs 4-20mA module (current signal)
L3	4 analogue outputs 0-20mA module (current signal)
L4	4 analogue outputs 4-20mA module (current signal)

Additional modules (Optional)

P12	M12 additional power supply module

Module accessories

Without DIN rail adapter
G With DIN rail adapter
Refer to the current limits indicated in the pages relating to the nodes / IO-Link interface

Configuration examples

Example shown: PX3-P-N4-D8-V4-M3-D12
Multiprotocol module with PROFINET IO RT protocol node, M8 digital input module, M8 analogue output module, 37 pin (SUB-D) digital output module and M12 digital input module.

Example shown: PX3-P-G-A4-3D8-2M12
Multiprotocol module with EtherCAT ${ }^{\circledR}$ protocol node, 3 M8 digital input modules and 2 M12 digital output modules; also includes DIN rail adaptors.

Overall dimensions

Right endplate kit
Coding: 3100.KT. 03

Weight 51 g

DIN rail adapter
Coding: 3100.16

Weight 12 g

Cable complete with connector, male 37 poles, IP65
Coding: 2400.37.M.C.C

1. Assemble the required modules starting with 3100 . KT. 03 right endplate kit.

2. To lock: rotate anticlockwise (in the direction of the LOCK print on the case).
To unlock: rotate clockwise (in the direction of the UNLOCK print on the case).
The same procedure shall be used to add or remove any module.

A. For integration with a manifold it is necessary to remove the 3100 . KT. 03 right endplate kit.

3. Complete the assembly with the 3100.KT. 00 left endplate kit.

4. If required, assemble the DIN rail adapter using an 3 mm allen key.

B. Series PX modular electronic system can be integrated with the following valve manifold series:

- Optyma S
- Optyma F
- Optyma T
- 2700

The Series 3000 manifolds already integrates with the PX Series modules with dedicated fixing options.
Please refer to www.pneumaxspa.com for more details.

CANopen ${ }^{\circledR}$ protocol node kit

CANopen ${ }^{\oplus}$ node manages 64 inputs and outputs.
Accessory modules can be connected in whatever order and configuration.
Connection to CANopen ${ }^{\circledR}$ fieldbus is made via two M12, male and female, 5 pins, type A circular connectors, in parallel between them; connectors pinout is compliant to CiA Draft recommendation 303-1 (V. 1.3:30 December 2004).
Transmission speed and address, as well as termination resistor activation are set via DIP-switches.
CANopen ${ }^{\circledR}$ node is available in two versions with 32 or 48 outputs allocated to solenoid valves on the manifold directly connected to the node.
Such outputs correspond to least significant bytes and their allocation is independent of how many solenoid valves are installed.
Remaining outputs can be used to control the modules
Byte allocation to additional modules is fully automatic.

Current limitations

Both stand alone and integrated components must operate within the current limits of the fieldbus node; please note: the solenoid valves are supplied by OUTPUTS + 24 V DC (pin 4).
To compute the maximum current on the OUTPUTS +24 VDC , please use the following formula:

$$
I_{24 V D C \text { out }}=\sum_{i=1}^{n} I_{\text {out }, i}+m i_{E V} \quad \begin{aligned}
& n=\text { number of installed modules } \\
& I_{\text {out }, i}=\text { maximum total current absorbed by the i-th module on the OUTPUTS }+24 \mathrm{~V} \\
& m=\text { number of rail (please see specifications of the single module pilots }
\end{aligned}
$$

$i_{E V}=$ mean absorbed current per solenoid pilot (please see table below)

Series	i_EV
2200 "Optyma S"	36 mA
2500 "OptymaF"	54 mA
2500 "Optyma T"	54 mA
Series 2700	$24 \mathrm{~mA}(1 \mathrm{~W}$ version $) / 100 \mathrm{~mA}(2,3 \mathrm{~W}$ version $)$

For each fieldbus node, maximum deliverable current by OUTPUTS + 24 VDC supply is 4 A , moreover the sum of the currents on OUTPUTS +24 VDC and INPUTS +24 VDC must not exceed 4 A .
$I_{24 V D C \text { out }}+I_{24 V D C \text { in }}<4 A$
Where:
$I_{24 V D C \text { in }}=\sum_{i=1}^{n} I_{i n, i}$
$n=$ number of installed modules
$I_{\text {in,i }}=$ maximum total current absorbed by the i-th module on the INPUTS +24 V DC supply rail (please see specifications of the single module)

Coding: K5530.64.VCO

(V) \begin{tabular}{l|l|}
\hline VERSION

\hline | $32=32$ output bits available for valve |
| :--- |
| connections |

\hline | $48=48$ output bits available for valve |
| :--- |
| connections |

\hline
\end{tabular}

In case total current is more than 4A, it is mandatory to supply modules exceeding current limit with power supply module K5030.M12.

Scheme / Overall dimensions and I/O layout

Technical characteristics		
Specifications		CiA Draft Standard Proposal 301 V 4.10 (15 August 2006)
Case		Reinforced technopolymer
Power supply	Voltage	$+24 \mathrm{VDC} \pm 10 \%$
	Node only current consumption on + 24 V DC inputs	40 mA
	Power supply diagnosis	Green LED PWR NODE / Green LED PWR OUT
Communication	Connection	2 M12 5 pins male-female connectors type A (IEC 60947-5-2)
	Baud rate	10-20-50-125-250-500-800-1000 Kbit/s
	Addresses possible numbers	From 1 to 63
	Maximum nodes number in network	64 (slave + master)
	Bus maximum recommended length	$100 \mathrm{mat} 500 \mathrm{Kbit} / \mathrm{s}$
	Bus diagnosis	Green/red status LED
Configuration file		Available from our web site http://www.pneumaxspa.com
Protection degree		IP65 when assembled
Temperature ${ }^{\circ} \mathrm{C}$		$-5 \ldots+50$

Solenoid valves manifold

Series PX - Serial systems

PROFIBUS DP protocol node kit

PROFIBUS DP node manages 64 inputs and outputs.
Accessory modules can be connected in whatever order and configuration.
Connection to PROFIBUS DP fieldbus is made via two M12, male and female, 5 pins, type B circular connectors, in parallel between them; connectors pinout is PROFIBUS Interconnection Technology specifications compliant (Version 1.1, August 2001).
Address as well as termination resistor activation are set via DIP-switches.
PROFIBUS DP node is available in two versions with 32 or 48 outputs allocated to solenoid valves on the manifold directly connected to the node.
Such outputs correspond to least significant bytes and their allocation is independent of how many solenoid valves are installed.
Remaining outputs can be used to control the modules.
Byte allocation to additional modules is fully automatic.

Current limitations

Both stand alone and integrated components must operate within the current limits of the fieldbus node; please note: the solenoid valves are supplied by OUTPUTS + 24 VDC (pin 4).
To compute the maximum current on the OUTPUTS +24 VDC , please use the following formula:

$$
n=\text { number of installed modules }
$$

$I_{\text {out }, i}=$ maximum total current absorbed by the i-th module on the OUTPUTS +24 V
$I_{24 V D C \text { out }}=\sum_{i=1}^{n} I_{\text {out }, i}+m i_{E V}$
$I_{\text {out }, i}$ DC supply rail (please see specifications of the single module)

$$
m=\text { number of installed solenoid pilots }
$$

$i_{E V}=$ mean absorbed current per solenoid pilot (please see table below)

Series	i_EV
2200 "Optyma S"	36 mA
2500 "Optyma F"	54 mA
2500 "Optyma T"	54 mA
Series 2700	$24 \mathrm{~mA}(1 \mathrm{~W}$ version $) / 100 \mathrm{~mA}(2,3 \mathrm{~W}$ version)

For each fieldbus node, maximum deliverable current by OUTPUTS + 24 VDC supply is 4 A , moreover the sum of the currents on OUTPUTS +24 V DC and INPUTS +24 V DC must not exceed 4 A .
$I_{24 V D C \text { out }}+I_{24 V D C \text { in }}<4 A$
Where:

$$
I_{24 V D C \text { in }}=\sum_{i=1}^{n} I_{i n, i} \quad \begin{aligned}
& n=\text { number of installed modules } \\
& I_{i n, i}=\text { maximum total current absorbed by the i-th module on the INPUTS }+24 \mathrm{~V} \text { DC } \\
& \text { supply rail (please see specifications of the single module) }
\end{aligned}
$$

Coding: K5330.64.VPB

	VERSION$32=32$ output bits available for valve connections

In case total current is more than 4A, it is mandatory to supply modules exceeding current limit with power supply module K5030.M12.

Scheme / Overall dimensions and I/O layout

PIN	SIGNAL	DESCRIPTION
$\mathbf{1}$	VP	Optional Power supply plus, (P5V)
$\mathbf{2}$	A-line	Receive / Transmit data -N, A-line
$\mathbf{3}$	DGND	Data Ground (reference potential to VP)
$\mathbf{4}$	B-line	Receive / Transmit data -P, B-line
$\mathbf{5}$	SHIELD	Shield or PE

Technical characteristics		
Specifications		PROFIBUSDP
Case		Reinforced technopolymer
Power supply	Voltage	$+24 \mathrm{VDC} \pm 10 \%$
	Node only current consumption on + 24 V DC inputs	70 mA
	Power supply diagnosis	Green LED PWR NODE/ Green LED PWR OUT
Communication	Connection	2 M 125 pins male-female connectors type B
	Baud rate	9,6-19,2-93,75-187,5-500-1500-3000-6000-12000 Kbit/s
	Addresses possible numbers	From 1 to 99
	Maximum nodes number in network	100 (slave + master)
	Bus maximum recommended length	100 m at $12 \mathrm{Mbit} / \mathrm{s}-1200 \mathrm{mat} 9,6 \mathrm{Kbit} / \mathrm{s}$
	Bus diagnosis	Green/red status LED
Configuration file		Available from our web site http://www.pneumaxspa.com
Protection degree		IP65 when assembled
Temperature ${ }^{\circ} \mathrm{C}$		$5 \ldots+50$

EtherNet/IP protocol node kit

EtherNet/IP node manages 128 inputs and outputs.
Accessory modules can be connected in whatever order and configuration.
Coding: K5730.128.48EI
Network connection is made via 2 M12 female, type D, 4 pins, circular connectors.
Code K5730.128.48EI provides first 48 outputs, corresponding to least significant 6 bytes, are allocated to the solenoid valve positions, regardless how many they are and how many valves are installed on the manifold directly connected to the node Remaining 80 outputs can be used to manage output modules; bytes allocation to additional modules is fully automatic.

Current limitations

Both stand alone and integrated components must operate within the current limits of the fieldbus node; please note: the solenoid valves are supplied by OUTPUTS + 24 V DC (pin 4).
To compute the maximum current on the OUTPUTS +24 VDC , please use the following formula:

$$
I_{24 V D C \text { out }}=\sum_{i=1}^{n} I_{\text {out }, i}+m i_{E V} \quad \begin{aligned}
& n=\text { number of installed modules } \\
& I_{\text {out }, i}=\text { maximum total current absorbed by the i-th module on the OUTPUTS }+24 \mathrm{~V} \\
& m=\text { number of installed solenoid pilots }
\end{aligned}
$$

$i_{E V}=$ mean absorbed current per solenoid pilot (please see table below)

Series	i_EV
2200 "Optyma S"	36 mA
2500 "OptymaF"	54 mA
2500 "Optyma T"	54 mA
Series 2700	$24 \mathrm{~mA}(1 \mathrm{~W}$ version $) / 100 \mathrm{~mA}(2,3 \mathrm{~W}$ version $)$

For each fieldbus node, maximum deliverable current by OUTPUTS + 24 VDC supply is 4 A , moreover the sum of the currents on OUTPUTS +24 V DC and INPUTS +24 V DC must not exceed 4 A .
$I_{24 V D C}$ out $+I_{24 V D C}$ in $<4 A$
Where:

$$
I_{24 \mathrm{VDC} \text { in }}=\sum_{i=1}^{n} I_{\text {in,i }} \quad \begin{aligned}
& n=\text { number of installed modules } \\
& I_{i n, i}=\text { maximum total current absorbed by the i-th module on the INPUTS }+24 \mathrm{VDC} \\
& \text { supply rail (please see specifications of the single module) }
\end{aligned}
$$

Scheme / Overall dimensions and I/O layout

Technical characteristics		
Case		Reinforced technopolymer
Power supply	Voltage	$+24 \mathrm{VDC} \pm 10 \%$
	Node only current consumption on + 24 V DC inputs	65 mA
	Power supply diagnosis	Green LED PWR NODE / Green LED PWR OUT
Communication	Connection	2 M12 4 pins male-female connectors type D (IEC 61076-2-101)
	Baud rate	$100 \mathrm{Mbit} / \mathrm{s}$
	Maximum distance between 2 nodes	100 m
	Bus diagnosis	Green/red status LED
Configuration file		Available from our web site http://www.pneumaxspa.com
Protection degree		IP65 when assembled
Temperature ${ }^{\circ} \mathrm{C}$		$-5 \ldots+50$

Solenoid valves manifold

Series PX - Serial systems

EtherCAT ${ }^{\oplus}$ protocol node kit

EtherCAT ${ }^{\circledR}$ node manages 128 inputs and outputs
Accessory modules can be connected in whatever order and configuration
Network connection is made via 2 M12 female, type D, 4 pins, circular connectors.
Code K5730.128.48EC provides first 48 outputs, corresponding to least significant 6 bytes, are allocated to the solenoid valve positions, regardless how many they are and how many valves are installed on the manifold directly connected to the node. Remaining 80 outputs can be used to manage output modules; bytes allocation to additional modules is fully automatic.

Current limitations

Both stand alone and integrated components must operate within the current limits of the fieldbus node; please note: the solenoid valves are supplied by OUTPUTS + 24 V DC (pin 4).
To compute the maximum current on the OUTPUTS +24 VDC , please use the following formula:

$$
n=\text { number of installed modules }
$$

$I_{\text {out }, i}=$ maximum total current absorbed by the i-th module on the OUTPUTS +24 V
DC supply rail (please see specifications of the single module)
m = number of installed solenoid pilots
$i_{E V}=$ mean absorbed current per solenoid pilot (please see table below)

Series	i_EV
2200 "Optyma S"	36 mA
2500 "OptymaF"	54 mA
2500 "Optyma T"	54 mA
Series 2700	$24 \mathrm{~mA}(1 \mathrm{~W}$ version) $/ 100 \mathrm{~mA}(2,3 \mathrm{~W}$ version)

For each fieldbus node, maximum deliverable current by OUTPUTS + 24 VDC supply is 4 A , moreover the sum of the currents on OUTPUTS +24 VDC and INPUTS +24 VDC must not exceed 4 A .
$I_{24 V D C \text { out }}+I_{24 V D C \text { in }}<4 \mathrm{~A}$
Where:

$$
I_{24 \mathrm{VDC} \text { in }}=\sum_{i=1}^{n} I_{i n, i} \quad \begin{aligned}
& n=\text { number of installed modules } \\
& I_{i n, i}=\text { maximum total current absorbed by the } \mathrm{i} \text {-th module on the INPUTS }+24 \mathrm{VDC} \\
& \text { supply rail (please see specifications of the single module) }
\end{aligned}
$$

Coding: K5730.128.48EC

In case total current is more than 4A, it is mandatory to supply modules exceeding current limit with power supply module K5030.M12.

Scheme / Overall dimensions and I/O layout

Technical characteristics		
Case		Reinforced technopolymer
Power supply	Voltage	$+24 \mathrm{VDC} \pm 10 \%$
	Node only current consumption on +24V DC inputs	65 mA
	Power supply diagnosis	Green LED PWR NODE / Green LED PWR OUT
Communication	Connection	2 M12 4 pins male-female connectors type D (IEC 61076-2-101)
	Baud rate	$100 \mathrm{Mbit} / \mathrm{s}$
	Maximum distance between 2 nodes	100 m
	Bus diagnosis	Green/red status LED
Configuration file		Available from our web site http://www.pneumaxspa.com
Protection degree		IP65 when assembled
Temperature ${ }^{\circ} \mathrm{C}$		$-5 \ldots+50$

PROFINET IO RT protocol node kit

PROFINET IO RT node manages 128 inputs and outputs.
Accessory modules can be connected in whatever order and configuration.
Network connection is made via 2 M12 female, type D, 4 pins, circular connectors.
Code K5730.128.48PN provides first 48 outputs, corresponding to least significant 6 bytes, are allocated to the solenoid valve positions, regardless how many they are and how many valves are installed on the manifold directly connected to the node Remaining 80 outputs can be used to manage output modules; bytes allocation to additional modules is fully automatic.

Current limitations

Both stand alone and integrated components must operate within the current limits of the fieldbus node; please note: the solenoid valves are supplied by OUTPUTS + 24 V DC (pin 4).
To compute the maximum current on the OUTPUTS +24 VDC , please use the following formula:

$$
I_{24 V D C \text { out }}=\sum_{i=1}^{n} I_{\text {out }, i}+m i_{E V} \quad \begin{aligned}
& n=\text { number of installed modules } \\
& I_{\text {out }, i}=\text { maximum total current absorbed by the i-th module on the OUTPUTS }+24 \mathrm{~V}
\end{aligned}
$$

$m=$ number of installed solenoid pilots
$i_{E V}=$ mean absorbed current per solenoid pilot (please see table below)

Series	i_EV
2200 "Optyma S"	36 mA
2500 "OptymaF"	54 mA
2500 "Optyma T"	54 mA
Series 2700	$24 \mathrm{~mA}(1 \mathrm{~W}$ version $) / 100 \mathrm{~mA}(2,3 \mathrm{~W}$ version $)$

For each fieldbus node, maximum deliverable current by OUTPUTS + 24 VDC supply is 4 A , moreover the sum of the currents on OUTPUTS +24 V DC and INPUTS +24 V DC must not exceed 4 A .
$I_{24 V D C}$ out $+I_{24 V D C}$ in $<4 \mathrm{~A}$
Where:

$$
I_{24 \mathrm{VDC} \text { in }}=\sum_{i=1}^{n} I_{\text {in,i }} \quad \begin{aligned}
& n=\text { number of installed modules } \\
& I_{i n, i}=\text { maximum total current absorbed by the i-th module on the INPUTS }+24 \mathrm{VDC} \\
& \text { supply rail (please see specifications of the single module) }
\end{aligned}
$$

Coding: K5730.128.48PN

In case total current is more than 4A, it is mandatory to supply modules exceeding current limit with power supply module K5030.M12.

Scheme / Overall dimensions and I/O layout

Technical characteristics		
Case		Reinforced technopolymer
Power supply	Voltage	$+24 \mathrm{VDC} \pm 10 \%$
	Node only current consumption on +24 V DC inputs	65 mA
	Power supply diagnosis	Green LED PWR NODE / Green LED PWR OUT
Communication	Connection	2 M 124 pins male-female connectors type D (IEC 61076-2-101)
	Baud rate	$100 \mathrm{Mbit} / \mathrm{s}$
	Maximum distance between 2 nodes	100 m
	Bus diagnosis	Green / red status LED
Configuration file		Available from our web site http://www.pneumaxspa.com
Protection degree		IP65 when assembled
Temperature ${ }^{\circ} \mathrm{C}$		$-5 \ldots+50$

Solenoid valves manifold

Series PX - Serial systems

CC-Link IE Field Basic protocol node kit

CC-Link IE Field Basic node manages 128 inputs and outputs.
Accessory modules can be connected in whatever order and configuration.
Coding: K5730.128.48CL
Network connection is made via 2 M12 female, type D, 4 pins, circular connectors.
Code K5730.128.48CL provides first 48 outputs, corresponding to least significant 6 bytes, are allocated to the solenoid valve positions, regardless how many they are and how many valves are installed on the manifold directly connected to the node. Remaining 80 outputs can be used to manage output modules; bytes allocation to additional modules is fully automatic.

Current limitations

Both stand alone and integrated components must operate within the current limits of the fieldbus node; please note: the solenoid valves are supplied by OUTPUTS + 24 V DC (pin 4).
To compute the maximum current on the OUTPUTS +24 VDC , please use the following formula:

$$
n=\text { number of installed modules }
$$

$I_{\text {out }, i}=$ maximum total current absorbed by the i-th module on the OUTPUTS +24 V
$I_{24 V D C \text { out }}=\sum_{i=1}^{n} I_{\text {out }, i}+m i_{E V}$

$$
m=\text { number of installed solenoid pilots }
$$

$i_{E V}=$ mean absorbed current per solenoid pilot (please see table below)

Series	i_EV
2200 "Optyma S"	36 mA
2500 "Optyma F"	54 mA
2500 "Optyma T"	54 mA
Series 2700	$24 \mathrm{~mA}(1 \mathrm{~W}$ version $) / 100 \mathrm{~mA}(2,3 \mathrm{~W}$ version)

For each fieldbus node, maximum deliverable current by OUTPUTS +24 VDC supply is 4 A , moreover the sum of the currents on OUTPUTS +24 VDC and INPUTS +24 VDC must not exceed 4 A .
$I_{24 V D C \text { out }}+I_{24 V D C \text { in }}<4 A$
Where:
$I_{24 V D C \text { in }}=\sum_{i=1}^{n} I_{i n, i}$
n = number of installed modules
$I_{\text {in,i }}=$ maximum total current absorbed by the i-th module on the INPUTS +24 V DC supply rail (please see specifications of the single module)

IO-Link protocol interface kit

IO-Link interface manages 64 inputs and outputs.
Accessory modules can be connected in whatever order and configuration.
Electric power supply and IO-Link connection to the Master are made via M12, male, 5 pins, type A, circular connector, "CLASS B", according to IO-Link specifications.
Electric rails L+/L-supply interface only, while P24/N24 rails supply additional modules and solenoid valves.
Either power supplies are galvanically isolated in the IO-Link interfaces.
IO-Link interface is available in two versions with 32 or 48 outputs allocated to solenoid valves on the manifold directly connected to the node.
Such outputs correspond to least significant bytes and their allocation is independent of how many solenoid valves are installed. Remaining outputs can be used to control the modules.
Byte allocation to additional modules is fully automatic.

Current limitations

Both stand alone and integrated components must operate within the current limits of the fieldbus node; please note: the solenoid valves are supplied by pin 2 and pin 5 (P24/N24).
To compute the maximum current on the P24 / N24 supply, please use the following formula::
$n=$ number of installed modules
$I_{\text {out }, i}=$ maximum total current absorbed by the i-th module on the OUTPUTS +24 V
$I_{24 V D C \text { out }}=\sum_{i=1}^{n} I_{\text {out }, i}+m i_{E V}$
$I_{\text {out }, i}$ DC supply rail (please see specifications of the single module)
$I_{i n, i}=$ maximum total current absorbed by the i-th module on the INPUTS +24 VDC supply rail (please see specifications of the single module)
$m=$ number of installed solenoid pilots
$i_{E V}=$ mean absorbed current per solenoid pilot (please see table below)

Coding: K5830.64.VIK

(V) \begin{tabular}{l|l|}
\hline VERSION

\hline | $32=32$ output bits available for valve |
| :--- |
| connections |

\hline | $48=48$ output bits available for valve |
| :--- |
| connections |

\hline
\end{tabular}

(V) connections $48=48$ output bits available for valve connections

Series	i_EV
2200 "Optyma S"	36 mA
2500 "OptymaF"	54 mA
2500 "Optyma T"	54 mA
Series 2700	$24 \mathrm{~mA}(1 \mathrm{~W}$ version) $/ 100 \mathrm{~mA}(2,3 \mathrm{~W}$ version)

$=$ maximum total current absorbed by the i-th module on the INPUTS +24 VDC supply rail (please see specifications of the single module)
In case total current is more than 4 A , it is mandatory to supply modules exceeding current limit with power supply module K5030.M12.

Scheme / Overall dimensions and I/O layout

Technical characteristics		
Specifications		IO-Link Specification v1.1
Case		Reinforced technopolymer
Power supply	Voltage	+ $24 \mathrm{VDC}+/-10 \%$
	Interface current consumption on + 24 V DC (L+ / L-)	25 mA
	Power supply diagnosis	Green LED PWR NODE / Green LED PWR OUT
Communication	Connection	"Class B" port
	Communication speed	38.4 kbaud/s
	Maximum distance from Master	20 m
	Bus diagnosis	Green/red status LED
	Vendor ID / Device ID	1257 (hex 0x04E9) / 3000 (hex 0x0BB8)
Configurations file IODD		Available from our web site http://www.pneumaxspa.com
Protection degree		IP65 when assembled
Temperature ${ }^{\circ} \mathrm{C}$		$-5 \ldots+50$

Solenoid valves manifold

Series PX - Inputs and outputs modules

8 digital inputs module kit M8

M8 digital inputs module provides 8 M8, 3 pins, female connectors.
Inputs have PNP logic, + 24 V DC $\pm 10 \%$.
It is possible to connect 2 wires devices (e.g. switches, magnetic limit switches, pressure switches, etc.) as well as 3 wires devices (e.g. proximity sensors, photocells, electronic magnetic limit switches, etc.).

Inputs module power supply is provided by +24 VDC power input on the serial system (type A, 4 pin M12 power connector, pin 1) or by K5030.M12 additional power supply module, in case it were installed upstream of the inputs module.

Technical characteristics	
Maximum current per module	Overcurrent (auto-resettable fuse) Reverse polarity
Protection	$300 \mathrm{~mA} \Omega$
Input impedence	$<30 \mathrm{~m}$
Maximum cable length	8 bit
Input data allocation	5 mA
INPUTS + 24 V DC current consumption of the module only	

Coding: K5230.08.M8

Scheme / Overall dimensions and I/O layout

8 digital inputs module kit M12

M12 digital inputs module provides 4 M12, 5 pins, female connectors.
Inputs have PNP logic, + 24 V DC $\pm 10 \%$.
Coding: K5230.08.M12
Every connector takes two input channels.
It is possible to connect 2 wires devices (e.g. switches, magnetic limit switches, pressure switches, etc.) as well as 3 wires devices (e.g. proximity sensors, photocells, electronic magnetic limit switches, etc.).

Inputs module power supply is provided by +24 VDC power input on the serial system (type $\mathrm{A}, 4$ pin M12 power connector, pin 1) or by K5030.M12 additional power supply module, in case it were installed upstream of the inputs module.

Technical characteristics	
Maximum current per module	300 mA
Protection	Overcurrent (auto-resettable fuse) Reverse polarity
Input impedence	$3 \mathrm{k} \Omega$
Maximum cable length	$<30 \mathrm{~m}$
Input data allocation	8 bit
INPUTS +24 V DC current consumption of the module only	5 mA

Scheme / Overall dimensions and I/O layout

8 digital outputs module kit M8

M8 digital inputs module provides 8 M8, 3 pins, female connectors.
Outputs have PNP logic, + $24 \mathrm{VDC} \pm 10 \%$.
Outputs module power supply is provided by +24 V DC power input on the serial system (type A, 4 pins M12 power connector, pin 4)
or by K5030.M12 additional power supply module, in case it were installed upstream of the outputs module.
Power supply presence is displayed by "PWR OUT" green LED light-on
Each output has a LED indicator associated which lights up when output's signal status is high.

Technical characteristics	
Maximum current per output	100 mA
Protection	Short circuit (electronic), trigger at 2.8A
Maximum cable length	$<30 \mathrm{~m}$
Output data allocation	8 bit
OUTPUTS +24 VDC current consumption of the module only	15 mA

Coding: K5130.08.M8

8 digital outputs module kit M12

M12 digital inputs module provides 4 M12, 5 pins, female connectors
Outputs have PNP logic, + $24 \mathrm{VDC} \pm 10 \%$.
Outputs module power supply is provided by +24 VDC power input on the serial system (type $\mathrm{A}, 4$ pins M12 power connector, pin 4) or by K5030.M12 additional power supply module, in case it were installed upstream of the outputs module.
Power supply presence is displayed by "PWR OUT" green LED light-on
Each output has a LED indicator associated which lights up when output's signal status is high.

Technical characteristics	
Maximum current per output	100 mA
Protection	Short circuit (electronic), trigger at 2.8A
Maximum cable length	$<30 \mathrm{~m}$
Output data allocation	8 bit
OUTPUTS + 24 V DC current consumption of the module only	15 mA

Coding: K5130.08.M12

Scheme / Overall dimensions and I/O layout

Solenoid valves manifold

Series PX - Inputs and outputs modules

32 digital inputs module kit (37 pins SUB-D connector)

The module provides a SUB-D 37 pins female connector
Inputs have PNP logic, + 24 V DC $\pm 10 \%$.
It is possible to connect 2 wires devices (e.g. switches, magnetic limit switches, pressure switches, etc.) as well as 3 wires devices (e.g. proximity sensors, photocells, electronic magnetic limit switches, etc.).

Inputs module power supply is provided by +24 VDC power input on the serial system (type $\mathrm{A}, 4$ pin M12 power connector, pin 1) or by K5030.M12 additional power supply module, in case it were installed upstream of the inputs module.

Technical characteristics	
Maximum current per module	
Protection	Overcurrent (auto-resettable fuse) Reverse polarity
Input impedence	$3 \mathrm{k} \Omega$
Maximum cable length	$<30 \mathrm{~m}$
Input data allocation	32 bit
INPUTS + 24 VDC current consumption of the module only	10 mA

Coding: K5230.32.37P

Scheme / Overall dimensions and I/O layout

SUB-D 37 pins connector

32 digital outputs module kit (37 pins SUB-D connector)

The module provides a SUB-D 37 pins female connector
Outputs have PNP logic, + 24 V DC $\pm 10 \%$.
Outputs module power supply is provided by +24 VDC power input on the serial system (type A, 4 pins M12 power connector, pin 4) or by K5030.M12 additional power supply module, in case it were installed upstream of the outputs module.
Power supply presence is displayed by "PWR OUT" green LED light-on.

Technical characteristics	
Maximum current per output	100 mA
Protection	Short circuit (electronic), trigger at 2.8A
Maximum cable length	$<30 \mathrm{~m}$
Output data allocation	32 bit
OUTPUTS +24 V DC current consumption of the module only	15 mA

Scheme / Overall dimensions and I/O layout

Analogue inputs module kit M8

M8 analogue inputs module converts analogue signals into digital signals and transfers acquired data to field bus, via network node.
Inputs module power supply is provided by +24 V DC power input on the serial system (type $\mathrm{A}, 4$ pin M12 power connector, pin 1) or by K5030.M12 additional power supply module, in case it were installed upstream of the inputs module.

Technical characteristics	
Protection (pin 1)	Overcurrent (auto-resettable fuse)
Input impedance (voltage inputs)	$33 \mathrm{k} \Omega$
Digital conversion resolution	12 bit
Maximum cable length	$<30 \mathrm{~m}$
Input data allocation	16 bit per channel
Diagnostic LED	Input signal overcurrent or overvoltage
Accuracy	$0,3 \%$ F.S.
Overall maximum current 2 channels (pin 1)	300 mA
Overall maximum current 4 channels (pin 1)	$750 \mathrm{~mA}(375 \mathrm{~mA}$ for each pair of channels)
INPUTS + 24 V DC current consumption of the module only	15 mA

Coding: K5230.08

\boldsymbol{C}	CHANNELS
	$2=2$ channels
	$4=4$ channels
$\boldsymbol{*} \boldsymbol{S}$	SIGNAL
	T.00 $=\operatorname{VOLTAGE}(0-10 \mathrm{~V})$
	T. $01=\operatorname{VOLTAGE}(0-5 \mathrm{~V})$
	C. $00=\operatorname{CURRENT}(4-20 \mathrm{~mA})$
	$\mathbf{C l} .01=\operatorname{CURRENT}(0-20 \mathrm{~mA})$

NOILกgIપZISIG YIV

Scheme / Overall dimensions and I/O layout

Solenoid valves manifold

Series PX - Inputs and outputs modules

Analogue outputs module kit M8

M8 analogue outputs module converts output data, received from field bus via network node, into analogue signal. Outputs module power supply is provided by + 24 V DC power input on the serial system (type $\mathrm{A}, 4$ pins M12 power connector, pin 4) or by K5030.M12 additional power supply module, in case it were installed upstream of the outputs module.

Technical characteristics	
Protection (pin 1)	Overcurrent (auto-resettable fuse)
Protection (pin 4)	Overcurrent (auto-resettable fuse)
Digital conversion resolution	12 bit
Maximum cable length	$<30 \mathrm{~m}$
Output data allocation	16 bit per channel
Diagnostic LED	Output signal overcurrent
Accuracy	$0,3 \%$ F.S.
Overall maximum current 2 channels (pin 1)	300 mA
Overall maximum current 4 channels (pin 1)	$750 \mathrm{~mA} \mathrm{(375} \mathrm{~mA} \mathrm{for} \mathrm{each} \mathrm{pair} \mathrm{of} \mathrm{channels)} \mathbf{1 5 \mathrm { mA }}$
INPUTS + 24 V DC current consumption of the module only	35 mA
OUTPUTS + 24 V DC current consumption of the module only (2 channels)	70 mA
OUTPUTS + 24 V DC current consumption of the module only (4 channels)	

Coding: K5130.OS

C	CHANNELS
	$2=2$ channels
	$4=4$ channels
(S)	SIGNAL
	T. 00 = VOLTAGE (0-10V)
	T. $01=$ VOLTAGE (0-5V)
	C. $00=$ CURRENT ($4-20 \mathrm{~mA}$)
	C. 01 = CURRENT ($0-20 \mathrm{~mA}$)

Scheme / Overall dimensions and I/O layout

Pt100 inputs module kit

Pt100 inputs module digitizes signals from Pt100 probes and transfers acquired data to field bus, via network node. It is possible to connect two, three or four wires probes.
Inputs module power supply is provided by +24 V DC power input on the serial system (type $\mathrm{A}, 4$ pin M12 power connector, pin 1) or by K5030.M12 additional power supply module, in case it were installed upstream of the inputs module.

Technical characteristics	
Digital conversion resolution	12 bit
Maximum cable length	$<30 \mathrm{~m}$
Input data allocation	16 bit per channel
Diagnostic LED	Probe presence Temperature out of range
Accuracy	$\pm 0,2^{\circ} \mathrm{C}$
Probe temperature range	$-100^{\circ} \mathrm{C} \ldots+300^{\circ} \mathrm{C}$
INPUTS +24 V DC current consumption of the module only (2 channels)	25 mA
INPUTS +24 V DC current consumption of the module only (4 channels)	35 mA

Conversion formula (${ }^{\circ} \mathrm{C}$)

$$
\text { Temperature }\left({ }^{\circ} \mathrm{C}\right)=\left(\frac{\text { Points }}{4095} \times 400\right)-100
$$

Coding: K5230.OP.0ヘ

\boldsymbol{C}	CHANNELS
	$2=2$ channels
	$4=4$ channels
(1)	TYPE
	$0=$ Pt 1002 wires
	$1=$ Pt1003 wires
	$2=$ Pt1004 wires

Scheme / Overall dimensions and I/O layout

Solenoid valves manifold

Series PX - Additional modules

Additional power supply module kit
Additional power supply module supplies additional electric power for downstream optional modules, where "downstream" means farther from serial node, resetting the current limits of the network node / IO-Link interface.
Electric connection of the module to external power supply unit occurs via an M12 4 pins type A male connector.
M12 connector has two different pins to power up logics and inputs (Pin 1) and outputs (Pin 4).
Presence of each power supply rail is indicated by corresponding green LED.
When using IO-Link interface, the additional power supply module is useful for separating the module power supplies of input from the output modules placed downstream.

Scheme / Overall dimensions and I/O layout

	M12 4P male M12A 4P	nector
PIN	DESCRIPTION	MAX. CURRENT
1	$\begin{gathered} +24 \mathrm{~V} \text { DC } \\ \text { (LOGICS \& INPUTS) } \end{gathered}$	4 A
2	N.C.	-
3	0 V	4 A
4	+ 24 V DC (OUTPUTS)	4 A

Signal management
64 INPUT + 64 OUTPUT serial systems - 32 fixed OUTPUT (Ex. PROFIBUS DP and CANopen ${ }^{\circledR}$)

128 INPUT + 128 OUTPUT serial systems - 48 fixed OUTPUT (Ex. EtherNet/IP - EtherCAT ${ }^{\circledR}$ - PROFINET IO RT)

128 INPUT + 128 OUTPUT serial systems - 48 fixed OUTPUT (Ex. EtherNet/IP - EtherCAT® - PROFINET IO RT)

Solenoid valves manifold

Series PX-Connectors

POWER SUPPLY connectors

Straight connector M12A 4P female
Coding: 5312A.F04.00

PIN	DESCRIPTION
1	$+24 \mathrm{VDC}($ LOGICSAND INPUTS)
2	N.C.
3	0 V
4	+24 VDC (OUTPUTS)

Power supply socket

Upper view slave connector

NETWORK connectors

Straight connector M12B 5P male

Upper view slave connector

INPUTS connectors

Straight connector M12A 5P male

PIN	DESCRIPTION
1	+24 VDC
2	INPUTB
3	0 V
4	INPUTA
5	N.C.

Upper view slave connector

Straight connector M8 3P male

Coding: 5308A.M03.00

Plug for inputs modules

Coding: 5312B.M05.00

PIN	DESCRIPTION
1	Power Supply
2	A-Line
3	DGND
4	B-Line
5	SHIELD

Socket for bus PROFIBUS DP

Plugs

M12 plug
Coding: 5300.T12

M8 plug
Coding: 5300.T08

Series 3000 EVO

- Version 3100 (10 mm) and 3400 (15,5 mm)
- Nominal flow rate up to 200 NI/min (Version 3100)
- Nominal flow rate up to $600 \mathrm{NI} / \mathrm{min}$ (Version 3400)
- Stand alone or manifold mounted versions
- Valve replacement without disconnecting the tubes

Pneumax valves and solenoid valves are designed to guarantee versatility and maximum reliability in the control of integrated pneumatic circuits.
The Pneumax 3000 EVO series of solenoid valves is a very flexible solution that can be easily configured to optimize the efficiency of the whole system through a constant interface and communication with the machine.
The Pneumax 3000 EVO series is available in stand alone and manifold mounted versions.

- Available with a wide range of serial system protocols
- Wide range of accessories
- Available sub-base mounted or with M5 threaded ports (Version 3100) and G1/8" (Version 3400)
- Possibility to use different pressures along the manifold (including vacuum)
- Certified ${ }^{-1} \mathbf{M}_{u s}$

Both versions include a wide range of functions, capable of working with positive pressures up to 10 bar or vacuum.
The valves have aluminum bodies with integrated electrical connections, manual override and a LED that indicates when the valve is actuated. 3000 EVO series is another addition to the extensive range of solenoid valve systems designed for applications in very demanding industrial sectors such as assembly and robotics, packaging or automotive.

Construction characteristics

Body	Aluminium
Seals	NBR
Hydraulic piston seals	NBR
Springs	AISI 302 stainless steel
Operators	Technopolymer
Pistons	Aluminium / Technopolymer
Spools	Aluminium
Technical characteristics	
Voltage	$+24 \mathrm{~V} \mathrm{DC} \pm 10 \%$
Pilot consumption	Filtered air. No lubrication needed, if applied it shall be continuous
Pilot working pressure [12-14]	fromfrom 2,5 to 7 bacuum max. Valve working pressure $[1]$
Operating temperature	from $-5^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Protection degree	IP65
Fluid	

chnope		

Series 3000 EVO - STAND ALONE

Functions

S.V. 5/2 Monostable Solenoid-Spring
S.V. 5/2 Monostable Solenoid-Differential (only self feeding)
S.V. 5/2 Bistable Solenoid-Solenoid
S.V. 5/3 C.C. Solenoid-Solenoid
S.V. $2 \times 3 / 2$ N.C.-N.C. ($=5 / 3$ O.C.) Solenoid-Solenoid
S.V. $2 \times 3 / 2$ N.O.-N.O. (=5/3 P.C.) Solenoid-Solenoid
S.V. $2 \times 3 / 2$ N.C.-N.O. Solenoid-Solenoid
S.V. $2 \times 3 / 2$ N.O.-N.C. Solenoid-Solenoid

Solenoid valve ordering code

Example in the table: $\mathbf{3 1 1 5 . 5 2 . 0 0} \mathbf{3 9}$.82: Solenoid valve size $10 \mathrm{~mm} 5 / 2$ solenoid-spring self feeding with M8 SPEED-UP connector

Configurator

Example in the table: 3104-C2M15-T-0X0-A3M15-F3M15
Four position manifold Version 3100 (10mm) composed of:

- Solenoid valve $5 / 2$ solenoid-solenoid external feeding, + 24 V DC
- Free valve space plug
- Diaphragm plug on pipe 1
- Solenoid valve $5 / 2$ solenoid-spring self feeding, + 24 V DC
- Solenoid valve $2 \times 3 / 2$ N.C.-N.C. (=5/3 O.C.) solenoid-solenoid, + 24 V DC

Solenoid-Spring (Self feeding)

Coding: 3115.52.00.39.©

Weight 49 g
SHORT FUNCTION CODE "A"

	Technical characteristics
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous
Flow rate at 6 bar with $\Delta \mathrm{p}=1$ ($\mathrm{Nl} / \mathrm{min}$)	160
Responce time according to ISO 12238, activation time (ms)	10
Responce time according to ISO 12238, deactivation time (ms)	20
Working pressure (bar)	2,5 ... 7
Temperature ${ }^{\circ} \mathrm{C}$	$-5 \ldots+50$

Solenoid-Differential (Self feeding)

Coding: 3115.52.00.36.©
ELECTRICALCONNECTION
$02=\mathrm{H} 90^{\circ}$ SPEED-UP connector +
C 24 VDC
$82=$ M8 SPEED-UP connector +24 VDC
Weight 49 g
SHORTFUNCTIONCODE "B"

Fluid	Technical characteristics
Flow rate at 6 bar with $\Delta p=1(\mathrm{NI} / \mathrm{min})$	Filtered air. No lubrication needed, if applied it shall be continuous
Responce time according to SO 12238, activation time (ms)	160
Responce time according to ISO 12238, deactivation time (ms)	10
Working pressure (bar)	15
Temperature ${ }^{\circ} \mathrm{C}$	

Solenoid-Solenoid (Self feeding)

${ }^{\text {ch }}{ }^{\text {us }}$

Coding: 3115.52.00.35.©

C	ELECTRICALCONNECTION
	$\begin{aligned} & 02=\mathrm{H} 90^{\circ} \text { SPEED-UP connector }+ \\ & 24 \mathrm{VDC} \end{aligned}$
	$82=$ M8 SPEED-UP connector +24 VDC

Weight 59 g
SHORT FUNCTION CODE "C"

| Technical characteristics | |
| :--- | :---: | :---: |
| Fluid | |
| Flow rate at 6 bar with $\Delta \mathrm{p}=1(\mathrm{NI} / \mathrm{min})$ | Filtered air. No lubrication needed, if applied it shall be continuous |
| Responce time according to ISO 12238, activation time (ms) | 160 |
| Responce time according to ISO 12238, deactivation time (ms) | 10 |
| Working pressure (bar) | 20 |
| Temperature ${ }^{\circ} \mathrm{C}$ | $2,5 \ldots 7$ |

Solenoid-Solenoid 5/3 (Closed centres) (Self feeding)

Solenoid-Solenoid 2x3/2 (Self feeding)

Coding: 3115.62.E.35.C
FUNCTION
44 = N.C.- N.C. (5/3 Open centres)
$\boldsymbol{\epsilon}$
$54=$ N.O.-N.C.
55 = N.O.-N.O. (5/3 Pressured centres)
ELECTRICALCONNECTION
$02=\mathrm{H} 90^{\circ}$ SPEED-UP connector +
-
$82=$ M8 SPEED-UP connector +24 VDC

Weight $59,4 \mathrm{~g}$
SHORT FUNCTION CODE:
N.C. N.C. ($5 / 3$ Open centres) $=$
N.O.-N.O. (5/3 Pressured centres) $=$ " G " N.C.-N.O. = " H "
N.O.-N.C. $=$ " $"$

4
${ }_{c} \mathrm{NH}_{\text {us }}$

	Technical characteristics
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous
Flow rate at 6 bar with $\Delta \mathrm{p}=1(\mathrm{Nl} / \mathrm{min})$	150
Responce time according to ISO 12238, activation time (ms)	10
Responce time according to ISO 12238, deactivation time (ms)	15
Working pressure (bar)	2,5 ... 7
Temperature ${ }^{\circ} \mathrm{C}$	$-5 \ldots+50$

Solenoid-Spring (External feeding)

\mathbf{C}	ELECTRICALCONNECTION
	$\mathbf{0 2}=\mathrm{H} 90^{\circ}$ SPEED-UP connector + 24 VDC
	$\mathbf{8 2}=\mathrm{M} 8$ SPEED-UP connector +24 VDC

VDC
Weight 49 g
SHORT FUNCTION CODE "A"

Coding: 3115.52.00.29.C

Technicai characteristics

Solenoid-Solenoid (External feeding)

Coding: 3115.52.00.25.C
ELECTRICALCONNECTION
$02=\mathrm{H} 90^{\circ}$ SPEED-UP connector +
(C) 24 VDC
$82=$ M8 SPEED-UP connector +24 VDC
Weight 59 g
SHORTFUNCTION CODE "C"

		Technical characteristics
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous	
Flow rate at 6 bar with $\Delta \mathrm{p}=1(\mathrm{NI} / \mathrm{min})$		
Responce time according to ISO 12238, activation time (ms)	160	
Responce time according to $\operatorname{ISO} 12238$, deactivation time (ms)	10	
Working pressure (bar)	10	
Pilot pressure (bar)	From vacuum to 10	
Temperature ${ }^{\circ} \mathrm{C}$	$2,5 \ldots 7$	

Solenoid-Solenoid 5/3 (Closed centres) (External feeding)

${ }^{\text {c }}{ }^{\text {us }}$

Coding: 3115.53.31.25.©

SHORT FUNCTION CODE "E"

Technical characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous
Flow rate at 6 bar with $\Delta \mathrm{p}=1(\mathrm{~N} / \mathrm{min})$	
Responce time according to ISO 12238, activation time (ms)	150
Responce time according to ISO 12238, deactivation time (ms)	10
Working pressure (bar)	20
Pilot pressure (bar)	From vacuum to 10
Temperature ${ }^{\circ} \mathrm{C}$	$2,5 \ldots 7$

Solenoid-Solenoid 2x3/2 (External feeding)

Coding: 3115.62.E.25.C

Technical characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous
Flow rate at 6 bar with $\Delta \mathrm{p}=1(\mathrm{NI} / \mathrm{min})$	150
Responce time according to ISO 12238, activation time (ms)	10
Responce time according to ISO 12238, deactivation time (ms)	
Working pressure (bar)	From vacuum to 10
Pilot pressure (bar)	$\geq 3+(02 \times$ Inlet pressure)
Temperature ${ }^{\circ} \mathrm{C}$	$-5 \ldots+50$

Solenoid-Solenoid 5/3 (Closed centres) (Self feeding)

Technical characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous
Flow rate at 6 bar with $\Delta \mathrm{p}=1(\mathrm{NI} / \mathrm{min})$	500
Responce time according to ISO 12238, activation time (ms)	10
Responce time according to ISO 12238, deactivation time (ms)	20
Working pressure (bar)	$2,5 \ldots 7$
Temperature ${ }^{\circ} \mathrm{C}$	

Coding: 3415.53 .31 .35 .0
 $02=\mathrm{H} 90^{\circ}$ 24 VDC $82=$ M8 SPEED-UP connector +24

Voc
SHORT FUNCTION CODE "E"

Solenoid-Solenoid 2x3/2 (Self feeding)
 L14 = Manual over ride - side 14

Coding: 3415.62.©.35.©

F	FUNCTION
	44 = N.C.-N.C. (5/3 Open centres)
	$45=$ N.C.-N.O.
	$54=$ N.O.-N.C.
	$\begin{aligned} & \mathbf{5 5}=\text { N.O.-N.O. (5/3 Pressured } \\ & \text { centres) } \end{aligned}$
C	ELECTRICALCONNECTION
	$\begin{aligned} & \mathbf{0 2}=\mathrm{H} 90^{\circ} \text { SPEED-UP connector }+ \\ & 24 \mathrm{VDC} \end{aligned}$
	$\begin{aligned} & 82=\text { M8 SPEED-UP connector }+24 \\ & \text { VDC } \end{aligned}$

Weight 100 g
SHORT FUNCTION CODE:
N.C.- N.C. (5/3 Open centres) = "
N.O.-N.O. (5/3 Pressured centres) = " G " N.C.-N.O. = "H" N.O.-N.C. $=$ " $"$

为为

Technical characteristics
Fluid
Flow rate at 6 bar with $\Delta p=1(\mathrm{Nl} / \mathrm{min})$
Responce time according to ISO 12238, activation time (ms)
Responce time according to ISO 12238, deactivation time (ms)
Working pressure (bar)
Temperature ${ }^{\circ} \mathrm{C}$

Technical characteristics	
	Filtered air. No lubrication needed, if applied it shall be continuous
	500
	10
	15
	$-5 \ldots \ldots 7$

Solenoid-Spring (External feeding)

Coding: 3415.52.00.29.©

Weight 90 g
SHORT FUNCTION CODE "A"

L14 $=$ Manual over ride - side 14

Technical characteristics

Fluid
Flow rate at 6 bar with $\Delta \mathrm{p}=1$ (NI/min)
Responce time according to ISO 12238, activation time (ms)
Responce time according to ISO 12238, deactivation time (ms)
Working pressure (bar)
Pilot pressure (bar)
Temperature ${ }^{\circ} \mathrm{C}$

Technical characteristics	
	Filtered air. No lubrication needed, if applied it shall be continuous
	600
	10
	20
	From vacuum to 10
$2,5 \ldots 7$	

Solenoid-Solenoid (External feeding)
Coding: 3415.52.00.25.©

> SHORTFUNCTION CODE "C"

Technical characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous
Flow rate at 6 bar with $\Delta \mathrm{p}=1(\mathrm{NI} / \mathrm{min})$	600
Responce time according to ISO 12238, activation time (ms)	
Responce time according to ISO 12238, deactivation time (ms)	10
Working pressure (bar)	10
Pilot pressure (bar)	From vacuum to 10
Temperature ${ }^{\circ} \mathrm{C}$	$2,5 \ldots 7$

Solenoid-Solenoid 5/3 (Closed centres) (External feeding)

Coding: 3415.53.31.25.©

C	ALCONNECTIO
	$02=\mathrm{H} 90^{\circ}$ SPEED-UP connector + 24 VDC
	82 = M8 SPEED-UP connector + 24 VDC

Technical characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous
Flow rate at 6 bar with $\Delta \mathrm{p}=1$ ($\mathrm{Nl} / \mathrm{min})$	500
Responce time according to ISO 12238, activation time (ms)	10
Responce time according to ISO 12238, deactivation time (ms)	20
Working pressure (bar)	From vacuum to 10
Pilot pressure (bar)	2,5 ... 7
Temperature ${ }^{\circ} \mathrm{C}$	$-5 \ldots+50$

Solenoid-Solenoid 2x3/2 (External feeding)

c ${ }^{\circ} \mathrm{Nis}$

Coding: 3415.62. ©.25.C

F	FUNCTION
	44 = N.C.-N.C. (5/3 Open centres)
	$45=$ N.C.-N.O.
	54 = N.O.-N.C.
	$55 \text { = N.O.-N.O. (5/3 Pressured }$ centres)
C	ELECTRICALCONNECTION
	$\begin{aligned} & \mathbf{0 2}=\mathrm{H} 90^{\circ} \text { SPEED-UP connector }+ \\ & 24 \mathrm{VDC} \end{aligned}$
	$82=$ M8 SPEED-UP connector +24 VDC

Weight 100 g
SHORT FUNCTION CODE:
N.C.- N.C. (5/3 Open centres) = "F"
N.O.-N.O. (5/3 Pressured centres) $=$ " G " N.C.-N.O. = "H" N.O.-N.C. $=$ "I"

Technical characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous
Flow rate at 6 bar with $\Delta \mathrm{p}=1(\mathrm{NI} / \mathrm{min})$	500
Responce time according to ISO 12238, activation time (ms)	10
Responce time according to ISO 12238, deactivation time (ms)	15
Working pressure (bar)	From vacuum to 10
Pilot pressure (bar)	$\geq 3+(02 \times$ Inlet pressure)
Temperature ${ }^{\circ} \mathrm{C}$	$-5 \ldots+50$

	No. POSITIONS									
	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	
L1	39	49,5	60	70,5	81	91,5	102	112,5	123	
L2	29	39,5	50	60,5	71	81,5	92	102,5	113	
Weight (g)	150	200	250	300	350	400	450	500	550	

Assembling kit
Coding: 3115.KV
Weight 2 g

Closing plate

Coding: 3115.00
Weight 10 g

Manifold

	N. POSITIONS									
	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	
L1	58	74	90	106	122	138	154	170	186	
L2	49	65	81	97	113	129	145	161	177	
Weight (g)	350	440	530	620	710	800	890	980	1070	

Assembling kit
Coding: 3415.KV

Closing plate

Coding: 3415.00

Coding: 3430.17
Weight 3 g

M8 connector with 3 wires cable

Coding: MCH C

CABLELENGTH
L 1 = 2,5 meters
$2=5$ meters
$3=10$ meters
PUR Ø $0,6 \mathrm{~mm} 3 \times 0,15 \mathrm{~mm}^{2}$

Solenoid valve description

From the top

DIN rail fixing

Supply ports and maximum possible size according to valves used

Manual override actuation

Instable function:
Push to actuate
(when released it moves back to the original position)

Bistable function:
Push and turn to get the bistable function

Note: we recommend the manual override is returned to it's original position when not in use

Solenoid valves installation

Maximum fixing torque for fittings: $0,2 \mathrm{Nm}$

Solenoid valve description

DIN rail fixing

Supply ports and maximum possible size according to valves used

Manual override actuation

Instable function:
Push to actuate
(when released it moves back to the original position)

Bistable function:
Push and turn to get the bistable function

Note: we recommend the manual override is returned to it's original position when not in use

Solenoid valves installation

Maximum fixing torque for fittings: $0,2 \mathrm{Nm}$

Solenoid valves manifold

Series 3000 EVO - MANIFOLD

The range of solenoid valves to be assembled in pre-configured manifold, is available in multi-pin and serial versions, with a vast choice of connectors and analogue and digital input and output accessories.
The compact and clean design of both the valve body and the manifold, each one produced in aluminum, allows their use in applications requiring space optimization and weight reduction without sacrificing reliability and the prerogatives of aluminum.
The multi-pin connection version is available in three different types of connections:

- SUB-D 25 poles equipped with 24 outputs and configurable in different lengths up to 12 bistable valve positions on the manifold
- SUB-D 37 poles equipped with 32 outputs and configurable in different lengths up to 16 bistable valve positions on the manifold
- SUB-D 44 poles HD equipped with 40 outputs and configurable in different lengths up 20 bistable valve positions on the manifold

Every one of these options covers the wide range of application requirements and provides electronic management by default capable of energy saving on individual coils and managing PNP and NPN connections automatically without any difference in installation for the end user.
Precisely in order to guarantee maximum integration versatility in different machines and applications, the 3000 EVO series valves in the serial version are designed to interface with all main communication protocols: CANopen ${ }^{\circledR}$, PROFIBUS DP, EtherNet/IP, EtherCAT® ${ }^{\circledR}$, PROFINET IO RT, CC-Link IE Field Basic and IO-Link.
Each implemented protocol has been provided to guarantee the best expandibility and inputs/outputs management.
In particular it has been provided protocols to manage up to 64 inputs and 64 outputs (PROFIBUS DP, CANopen ${ }^{\circledR}$ and IO-Link) and other protocols to manage up to 128 inputs and 128 outputs (EtherCAT ${ }^{\oplus}$, EtherNet/IP, CC-Link IE Field Basic and PROFINET IO RT).
Taking advantage of the output signals it is possible to connect components to manage, for example, proportional pressure regulator or to control other solenoid valves.
The 3000 EVO series allows the use of modules dedicated to managing input signals up to the maximum number of inputs manageable by the specific serial node used.
Input modules with different interfaces and different technologies have been provided: modules with eight digital inputs with M8 or M12 connection, analogue or voltage input modules with M8 connection interface and others.
One of the strengths of this system is the possibility to freely configure the series of input and output modules, giving the advantage of installation flexibility.

Main characteristics

10 and $15,5 \mathrm{~mm}$ size.
Multi-position sub-bases in different lengths.
Integrated and optimized electrical connection system.

Functions

S.V. 5/2 Monostable Solenoid-Spring
S.V. 5/2 Monostable Solenoid-Differential
S.V. 5/2 Bistable Solenoid-Solenoid
S.V. 5/3 C.C. Solenoid-Solenoid
S.V. $2 \times 3 / 2$ N.C.-N.C. (=5/3 O.C.) Solenoid-Solenoid
S.V. $2 \times 3 / 2$ N.O.-N.O. (= 5/3 P.C.) Solenoid-Solenoid
S.V. $2 \times 3 / 2$ N.C.-N.O. Solenoid-Solenoid
S.V. $2 \times 3 / 2$ N.O.-N.C. Solenoid-Solenoid

Rules and configuration scheme

Configurable on Cadenas platform

Note:

When composing the configuration, always bear in mind that the maximum number of electrical signals available is:

- 48 if a serial node or IO-Link interface is used.
- 40 if a 44-pole multi-pin is used.
- 32 if a 37-pole multi-pin module is used.
- 24 if a 25 -pole multi-pin module is used.

Each position on the manifold occupies two electrical signals; if a monostable valve is used, an electrical signal is lost.
However, this makes it possible to replace the monostable valve with a bistable valve in the same position.
Diaphragm plugs are used to interrupt ports 1,3 and 5 of the sub-base.
If it is necessary to interrupt more than one port at the same time, put the letters that identify their position in sequence (e.g.: if it is necessary to intercept the ports 3 and 5 you must put the letters YZ).
If one or more ports must be interrupted more than once, the addition of the intermediate supply/discharge module is necessary.

Solenoid valves manifold

Series 3000 EVO - MANIFOLD - Configurator

Electronic components configurator in technopolymer

Refer to the current limits indicated in the pages relating to the nodes / IO-Link interface

Modules configuration

Configuration example of complete group:

- Version 3400 (34)
- Solenoid valves $5 / 2$ Solenoid-Solenoid (C)
- Technopolymer PX3 serial system (P-N4-D8-M8)
- Solenoid valves 2X3/2 NC-NC Solenoid-Solenoid (F)
- Manifold in external supply version (E)
- Solenoid valves 2X3/2 NC-NC Solenoid-Solenoid (F)
- Solenoid valves $5 / 2$ Solenoid-Spring (A)

34-P-N4-D8-M8-E-A-C-(2)F

Configuration examples

Example shown: 31-P-MP3-E-(4)C-(2)A
Manifold with external feeding, multi-pin 37 poles connection and solenoid valves.

Example shown: 34-P-N4-E-(3)C-XYZ-C-(2)A
Manifold with external feeding, serial node, solenoid valves and diaphragm plugs.

Example shown: 31-P-C4-D8-M12-E-C-B-T-XYZ-A-I-W-(2)C-XYZ-(6)C-T
Manifold with external feeding, serial node, M8 input module, M12 output module; solenoid valves, multi-position diaphragm plugs, additional power supply module.

Example shown: 31-P-C4-(2)D8-M12-A-C-B-(2)I-(2)T

Self feeding manifold with serial node, M8 input module, M12 output module, solenoid valves.

Solenoid-Spring

${ }^{c} \mathrm{Na}_{15}$

Coding: 3141.52.00.39.©

(CLECTRICALCONNECTION	
	$02=+24 \mathrm{VDC}$

Weight $55,7 \mathrm{~g}$
SHORT FUNCTION CODE "A"

Technical characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous
Flow rate at 6 bar with $\Delta \mathrm{p}=1(\mathrm{NI} / \mathrm{min})$	200
Responce time according to ISO 12238, activation time (ms)	
Responce time according to ISO 12238, deactivation time (ms)	10
Working pressure (bar)	20
Pilot pressure (bar)	From vacuum to 10
Temperature ${ }^{\circ} \mathrm{C}$	$2,5 \ldots 7$

Solenoid-Differential

${ }^{\text {ch }}$

Coding: 3141.52.00.36.C
ELECTRICALCONNECTION $02=+24$ VDC

Weight $55,7 \mathrm{~g}$
SHORT FUNCTION CODE "B"

Technical characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous
Flow rate at 6 bar with $\Delta \mathrm{p}=1(\mathrm{NI} / \mathrm{min})$	200
Responce time according to SO 12238 , activation time (ms)	10
Responce time according to $\operatorname{SO} 12238$, deactivation time (ms)	20
Working pressure (bar)	From vacuum to 10
Pilot pressure (bar)	$2,5 \ldots 7$
Temperature ${ }^{\circ} \mathrm{C}$	$-5 \ldots+50$

Solenoid-Solenoid 5/3 (Closed centres)

Coding: 3141.62.E.35.C

	lUNCTION
$\boldsymbol{4} \boldsymbol{4 4} \boldsymbol{4}$ = N.C.-N.C. ($5 / 3$ Open centres)	
	$45=$ N.C.-N.O.
	$54=$ N.O.-N.C.
	$55=$ N.O.-N.O. $(5 / 3$ Pressured centres)
\boldsymbol{C}	ELECTRICALCONNECTION
	$\mathbf{0 2}=+24 \mathrm{VDC}$

Weight $60,7 \mathrm{~g}$
SHORTFUNCTION CODE:
N.C.-N.C. ($5 / 3$ Open centres) $=$ "F"
N.O.-N.O. (5/3 Pressured centres) = " G "
N.C.-N.O. = "H"
N.O.-N.C. $=$ " ${ }^{1}$ "

Technical characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous
Flow rate at 6 bar with $\Delta \mathrm{p}=1$ (NI/min)	
Responce time according to ISO 12238, activation time (ms)	
Responce time according to ISO 12238, deactivation time (ms)	170
Working pressure (bar)	10
Pilot pressure (bar)	From vacuum to 10
Temperature ${ }^{\circ} \mathrm{C}$	$\geq 3+(02 \times$ Inlet pressure)

Solenoid-Solenoid

${ }^{\text {col }}$
US

 L14 = Manual over ride - side 14

Coding: 3441.52.00.35.C

Fluid
Technical characteristics

Flow rate at 6 bar with $\Delta p=1(\mathrm{Nl} / \mathrm{min})$
Responce time according to ISO 12238, activation time (ms) Responce time according to ISO 12238, deactivation time (ms) Working pressure (bar)
Pilot pressure (bar)
Temperature ${ }^{\circ} \mathrm{C}$

Technical characteristics	
	Filtered air. No lubrication needed, if applied it shall be continuous
600	
	10
	10
	From vacuum to 10
$2,5 \ldots 7$	
$-5 \ldots+50$	

Multi-pin module

Coding: 3140.00.C

Coding example	3140.00 .25 P (25 poles)	3140.00.37P (37 poles)	3140.00 .44 P (44 poles)
Weight (g)	47,4	51,3	49,1
Temperature ${ }^{\circ} \mathrm{C}$	$-5 \ldots+50$		

Multi-pin connections linking scheme

$\begin{array}{llllll}\text { POSITIONS } & 4 & 6 & 8 & 10 & 12\end{array}$

Weight 12 g

Fitting M5 Ø6
Coding: RDR560

AIR DISTRIBUTION
Weight 7 g

Coding: 3140.00

Weight 38 g

Weight 50 g

Diaphragm plug instalation

Diaphragm plug
Coding: 3430.17

Weight 3 g

Module adapter kit

Coding: 3100.KA.V

Left endplate kit
Coding: 3100.KT. 00

Weight 52 g

Offset compensation plate

DIN rail adapter

Coding: 3400.16

Weight 12 g

DIN rail extension adapter
Coding: 3400.16P

Weight 15 g
Note: For use if an additional DIN rail mount is required, assembled on a single I/O module.

Cable complete with connector, 25 Poles IP65
Coding: 2300.25.D.C

\mathcal{C}	CABLELENGTH
	$\mathbf{0 3}=3$ meters
	$\mathbf{0 5}=5$ meters
	$10=10$ meters
\mathbf{C}	CONNECTOR
	$\mathbf{1 0}=$ In line
	$\mathbf{9 0}=90^{\circ}$ Angle

Cable complete with connector, 37 Poles IP65
Coding: 2400.37.D.C

	CABLE LENGTH
	$\mathbf{0 3}=3$ meters
	$\mathbf{0 5}=5$ meters
	$\mathbf{1 0}=10$ meters
\mathbf{C}	CONNECTOR
	$\mathbf{1 0}=$ In line
	$\mathbf{9 0}=90^{\circ}$ Angle

Cable complete with connector, 44 Poles IP65
Coding: 2300.44.D.C

	CABLE LENGTH
	$\mathbf{0 3}=3$ meters
	$\mathbf{0 5}=5$ meters
	$10=10$ meters
\mathbf{C}	CONNECTOR
	$10=$ In line
	$\mathbf{9 0}=90^{\circ}$ Angle

Solenoid valves manifold

Series 3000 EVO - MANIFOLD (10 mm) - Installation specifications

Solenoid valve description

From the top

DIN rail fixing

Supply ports and maximum possible size according to valves used
It is possible to supply/exhaust the manifold by removing the plugs and

Manual override actuation

Note: we recommend the manual override is returned to it's original position when not in use

Solenoid valves installation

Maximum fixing torque for fittings: $0,2 \mathrm{Nm}$

Serial systems and multi-pin modules installation

1. Fix the dedicated adapter (code 3100.KA.00) to the manifold.

2. To lock: rotate anticlockwise (in the direction of the LOCK print on the case).

To unlock: rotate clockwise (in the direction of the UNLOCK print on the case).
The same procedure shall be used to add or remove any module.

Solenoid valve description

From the top

DIN rail fixing

Supply ports and maximum possible size according to valves used
is possible to supply/exhaust the

Manual override actuation

Maximum fixing torque for fittings: $0,2 \mathrm{Nm}$
Serial systems and multi-pin modules installation

1. Fix the dedicated adapter (code $3100 . K A .00$) to the manifold.

2. Assemble the required modules.

3. To lock: rotate anticlockwise (in the direction of the LOCK print on the case).
To unlock: rotate clockwise (in the direction of the UNLOCK print on the case).
The same procedure shall be used to add or remove any module.

4. Complete the assembly with the 3100.KT. 00 left endplate kit.

5. Fix the offset compensation plate 3400.P0 to the last single module.

Solenoid valves manifold

Series 3000 EVO - Serial systems

CANopen ${ }^{\oplus}$ protocol node

CANopen ${ }^{\oplus}$ node manages 64 inputs and outputs.
Accessory modules can be connected in whatever order and configuration.
Connection to CANopen ${ }^{\circledR}$ fieldbus is made via two M12, male and female, 5 pins, type A circular connectors, in parallel between
them; connectors pinout is compliant to CiA Draft recommendation 303-1 (V. 1.3:30 December 2004).
Transmission speed and address, as well as termination resistor activation are set via DIP-switches.
CAN open ${ }^{\oplus}$ node is available in two versions with 32 or 48 outputs allocated to solenoid valves on the manifold directly connected to the node.
Such outputs correspond to least significant bytes and their allocation is independent of how many solenoid valves are installed. Remaining outputs can be used to control the modules.
Byte allocation to additional modules is fully automatic.

Current limitations

Both stand alone and integrated components must operate within the current limits of the fieldbus node; please note: the solenoid valves are supplied by OUTPUTS + 24 VDC (pin 4).
To compute the maximum current on the OUTPUTS +24 VDC , please use the following formula:
$n=$ number of installed modules
$=$ maximum total current absorbed by the i-th module on the OUTPUTS +24 V
$I_{\text {out }, i}$ DC supply rail (please see specifications of the single module)
$m=$ number of installed solenoid pilots
$i_{E V}=$ mean absorbed current per solenoid pilot (please see table below)

Series	i_EV
3000	36 mA

Coding: 5530.64.VCO

	VERSION
V	$32=32$ output bits available for valve connections
$48=48$ output bits available for valve connections	

In case total current is more than 4 A , it is mandatory to supply modules exceeding current limit with power supply module K5030.M12.

For each fieldbus node, maximum deliverable current by OUTPUTS + 24 VDC supply is 4 A , moreover the sum of the currents on OUTPUTS +24 VDC and INPUTS +24 VDC must not exceed 4 A .
$I_{24 V D C \text { out }}+I_{24 V D C \text { in }}<4 A$
Where:
$I_{24 V D C}=\sum_{i=1}^{n} I_{i n, i} \quad \begin{aligned} & n=\text { number of installed modules } \\ & I_{i n, i}=\text { maximum total current absorbed by the i-th module on the INPUTS }+24 \mathrm{~V} \text { DC } \\ & \text { sublease see specifications of the single module) }\end{aligned}$
Scheme / Overall dimensions and I/O layout

PROFIBUS DP protocol node

PROFIBUS DP node manages 64 inputs and outputs.

Accessory modules can be connected in whatever order and configuration.
Connection to PROFIBUS DP fieldbus is made via two M12, male and female, 5 pins, type B circular connectors, in parallel between them; connectors pinout is PROFIBUS Interconnection Technology specifications compliant (Version 1.1, August 2001). Address as well as termination resistor activation are set via DIP-switches.
PROFIBUS DP node is available in two versions with 32 or 48 outputs allocated to solenoid valves on the manifold directly connected to the node.
Such outputs correspond to least significant bytes and their allocation is independent of how many solenoid valves are installed. Remaining outputs can be used to control the modules.
Byte allocation to additional modules is fully automatic.

Current limitations

Both stand alone and integrated components must operate within the current limits of the fieldbus node; please note: the solenoid valves are supplied by OUTPUTS + 24 V DC (pin 4)
To compute the maximum current on the OUTPUTS +24 VDC , please use the following formula:

	$n=$ number of installed modules
$I_{24 V}$ DC out $=\sum_{i=1}^{n} I_{\text {out }, i}+m i_{E V}$	maximum total current absorbed by the i-th module on the OUTPUTS +24 V $m=$ number of installed solenoid pilots
	$i_{E V}=$ mean absorbed current per solenoid pilot (please see table below)

Series

Coding: 5330.64.VPB

	VERSION
V	32 output bits available for valve connections
	$\mathbf{4 8}=48$ output bits available for valve connections

For each fieldbus node, maximum deliverable current by OUTPUTS + 24 VDC supply is 4 A , moreover the sum of the currents on OUTPUTS +24 VDC and INPUTS +24 V DC must not exceed 4 A .
$I_{24 V D C}$ out $+I_{24 V D C \text { in }}<4 \mathrm{~A}$
Where:
$I_{24 V D C}=\sum_{i=1}^{n} I_{i n, i}$

$$
n=\text { number of installed modules }
$$

$I_{\text {in,i }}=$ maximum total current absorbed by the i-th module on the INPUTS +24 VDC supply rail (please see specifications of the single module)

In case total current is more than 4 A , it is mandatory to supply modules exceeding current limit with power supply module K5030.M12.

Scheme / Overall dimensions and I/O layout

Technical characteristics		
Specifications		PROFIBUS DP
Case		Reinforced technopolymer
Power supply	Voltage	$+24 \mathrm{VDC} \pm 10 \%$
	Node only current consumption on + 24 V DC inputs	70 mA
	Power supply diagnosis	Green LED PWR NODE/ Green LED PWR OUT
Communication	Connection	2 M125 pins male-female connectors type B
	Baud rate	9,6-19,2-93,75-187,5-500-1500-3000-6000-12000 Kbit/s
	Addresses possible numbers	From 1 to 99
	Maximum nodes number in network	100 (slave + master)
	Bus maximum recommended length	$100 \mathrm{mat} 12 \mathrm{Mbit} / \mathrm{s}-1200 \mathrm{mat} 9,6 \mathrm{Kbit} / \mathrm{s}$
	Bus diagnosis	Green/red status LED
Configuration file		Available from our web site http://www.pneumaxspa.com
Protection degree		IP65 when assembled
Temperature ${ }^{\circ} \mathrm{C}$		$-5 \ldots+50$

Solenoid valves manifold

Series 3000 EVO - Serial systems

EtherNet/IP protocol node

EtherNet/IP node manages 128 inputs and outputs.
Accessory modules can be connected in whatever order and configuration.
Coding: 5730.128.48EI
Network connection is made via 2 M12 female, type D, 4 pins, circular connectors.
Code 5730.128 .48 El provides first 48 outputs, corresponding to least significant 6 bytes, are allocated to the solenoid valve positions, regardless how many they are and how many valves are installed on the manifold directly connected to the node. Remaining 80 outputs can be used to manage output modules; bytes allocation to additional modules is fully automatic.

Current limitations

Both stand alone and integrated components must operate within the current limits of the fieldbus node; please note: the solenoid valves are supplied by OUTPUTS + 24 V DC (pin 4).
To compute the maximum current on the OUTPUTS +24 VDC , please use the following formula:
$I_{24 V D C \text { out }}=\sum_{i=1}^{n} I_{\text {out }, i}+m i_{E V}$

$n=$ number of installed modules

$I_{\text {out }, i}=$ maximum total current absorbed by the i-th module on the OUTPUTS +24 V
DC supply rail (please see specifications of the single module)
m = number of installed solenoid pilots
$i_{E V}=$ mean absorbed current per solenoid pilot (please see table below)
3000 Series

For each field bus node, maximum deliverable current by OUTPUTS + 24 VDC supply is 4 A , moreover the sum of the currents on OUTPUTS +24 VDC and INPUTS +24 VDC must not exceed 4 A .
$I_{24 V D C}$ out $+I_{24 V D C}$ in $<4 \mathrm{~A}$
Where:
$I_{24 V \text { DC in }}=\sum_{i=1}^{n} I_{i n, i} \quad \begin{aligned} & n=\text { number of installed modules } \\ & I_{i n, i}=\text { maximum total current absorbed by the i-th module on the INPUTS }+24 \mathrm{~V} \text { DC } \\ & \text { supply rail (please see specifications of the single module) }\end{aligned}$
In case total current is more than 4 A , it is mandatory to supply modules exceeding current limit with power supply module K5030.M12.

Scheme / Overall dimensions and I/O layout

EtherCAT ${ }^{\text {® }}$ protocol node

EtherCAT ${ }^{\circledR}$ node manages 128 inputs and outputs.
Accessory modules can be connected in whatever order and configuration.
Coding: 5730.128.48EC
Network connection is made via 2 M12 female, type D, 4 pins, circular connectors.
Code 5730.128 .48 EC provides first 48 outputs, corresponding to least significant 6 bytes, are allocated to the solenoid valve positions, regardless how many they are and how many valves are installed on the manifold directly connected to the node Remaining 80 outputs can be used to manage output modules; bytes allocation to additional modules is fully automatic.

Current limitations

Both stand alone and integrated components must operate within the current limits of the fieldbus node; please note: the solenoid valves are supplied by OUTPUTS + 24 V DC (pin 4).
To compute the maximum current on the OUTPUTS +24 VDC , please use the following formula:

$$
I_{24 V D C \text { out }=\sum_{i=1}^{n} I_{\text {out }, i}+m i_{E V}} \begin{aligned}
& n=\text { number of installed modules } \\
& I_{\text {out }, i}=\text { maximum total current absorbed by the } \mathrm{D} \text {-th module on the OUTP rail (please see specifications of the single module) }+24 \mathrm{~V} \\
& m=\text { number of installed solenoid pilots }
\end{aligned}
$$

$i_{E V}=$ mean absorbed current per solenoid pilot (please see table below)

Series	i_EV
3000	36 mA

For each fieldbus node, maximum deliverable current by OUTPUTS +24 VDC supply is 4 A , moreover the sum of the currents on OUTPUTS +24 V DC and INPUTS +24 V DC must not exceed 4 A .
$I_{24 V D C}$ out $+I_{24 V D C}$ in $<4 \mathrm{~A}$
Where:
$I_{24 \mathrm{VDC} \text { in }}=\sum_{i=1}^{n} I_{i n, i} \quad \begin{aligned} & n=\text { number of installed modules } \\ & I_{i n, i}=\text { maximum total current absorbed by the i-th module on the INPUTS }+24 \mathrm{VDC} \\ & \text { supply rail (please see specifications of the single module) }\end{aligned}$
In case total current is more than 4A, it is mandatory to supply modules exceeding current limit with power supply module K5030.M12

Scheme / Overall dimensions and I/O layout

Solenoid valves manifold

Series 3000 EVO - Serial systems

PROFINET IO RT protocol node

PROFINET IO RT node manages 128 inputs and outputs
Accessory modules can be connected in whatever order and configuration.
Coding: 5730.128.48PN
Network connection is made via 2 M12 female, type D, 4 pins, circular connectors.
Code 5730.128 .48 PN provides first 48 outputs, corresponding to least significant 6 bytes, are allocated to the solenoid valve positions, regardless how many they are and how many valves are installed on the manifold directly connected to the node. Remaining 80 outputs can be used to manage output modules; bytes allocation to additional modules is fully automatic.

Current limitations

Both stand alone and integrated components must operate within the current limits of the fieldbus node; please note: the solenoid valves are supplied by OUTPUTS + 24 VDC (pin 4).
To compute the maximum current on the OUTPUTS +24 VDC , please use the following formula:
$I_{24 V D C \text { out }}=\sum_{i=1}^{n} I_{\text {out }, i}+m i_{E V}$

$n=$ number of installed modules

$I_{\text {out }, i}=$ maximum total current absorbed by the i-th module on the OUTPUTS +24 V
${ }^{i}$ DC supply rail (please see specifications of the single module)
$m=$ number of installed solenoid pilots
$i_{E V}=$ mean absorbed current per solenoid pilot (please see table below)

Series	i_EV
3000	36 mA

In case total current is more than 4A, it is mandatory to supply modules exceeding current limit with power supply module K5030.M12.

Scheme / Overall dimensions and I/O layout

Technical characteristics		
Case		Reinforced technopolymer
Power supply	Voltage	$+24 \mathrm{VDC} \pm 10 \%$
	Node only current consumption on + 24 V DC inputs	65 mA
	Power supply diagnosis	Green LED PWR NODE/ Green LED PWR OUT
Communication	Connection	2 M12 4 pins male-female connectors type D (IEC 61076-2-101)
	Baud rate	$100 \mathrm{Mbit} / \mathrm{s}$
	Maximum distance between 2 nodes	100 m
	Bus diagnosis	Green / red status LED
Configuration file		Available from our web site http://www.pneumaxspa.com
Protection degree		IP65 when assembled
Temperature ${ }^{\circ} \mathrm{C}$		$-5 \ldots+50$

CC-Link IE Field Basic protocol node

CC-Link IE Field Basic node manages 128 inputs and outputs.
Accessory modules can be connected in whatever order and configuration.
Network connection is made via 2 M12 female, type D, 4 pins, circular connectors.
Code 5730.128 .48 CL provides first 48 outputs, corresponding to least significant 6 bytes, are allocated to the solenoid valve positions, regardless how many they are and how many valves are installed on the manifold directly connected to the node Remaining 80 outputs can be used to manage output modules; bytes allocation to additional modules is fully automatic.

Current limitations

Both stand alone and integrated components must operate within the current limits of the fieldbus node; please note: the solenoid valves are supplied by OUTPUTS + 24 V DC (pin 4).
To compute the maximum current on the OUTPUTS +24 VDC , please use the following formula:

$$
I_{24 V D C \text { out }}=\sum_{i=1}^{n} I_{\text {out }, i}+m i_{E V} \quad \begin{aligned}
& n=\text { number of installed modules } \\
& I_{\text {out }, i}=\text { maximum total current absorbed by the } i \text {-th module on the OUTP rail (please see specifications of the single module) }+24 \mathrm{~V} \\
& m=\text { number of installed solenoid pilots }
\end{aligned}
$$

$i_{E V}=$ mean absorbed current per solenoid pilot (please see table below)

Series	i_EV
3000	36 mA

For each fieldbus node, maximum deliverable current by OUTPUTS +24 VDC supply is 4 A , moreover the sum of the currents on OUTPUTS +24 VDC and INPUTS +24 VDC must not exceed 4 A .
$I_{24 V D C \text { out }}+I_{24 V D C}$ in $<4 A$
Where:
$I_{24 V D C}$ in $=\sum_{i=1}^{n} I_{i n, i}$
n = number of installed modules
$I_{\text {in, } i}=$ maximum total current absorbed by the i-th module on the INPUTS +24 V DC supply rail (please see specifications of the single module)

Coding: 5730.128.48CL

Scheme / Overall dimensions and I/O layout

Technical characteristics		
Case		Reinforced technopolymer
Power supply	Voltage	$+24 \mathrm{VDC} \pm 10 \%$
	Node only current consumption on + 24 V DC inputs	65 mA
	Power supply diagnosis	Green LED PWR NODE / Green LED PWR OUT
Communication	Connection	2 M12 4 pins male-female connectors type D (IEC 61076-2-101)
	Baud rate	$100 \mathrm{Mbit} / \mathrm{s}$
	Maximum distance between 2 nodes	100 m
	Bus diagnosis	1 Green LED and 1 red status LED + 2 link and activity LEDs'
Configuration file		Available from our web site http://www.pneumaxspa.com
Protection degree		IP65 when assembled
Temperature ${ }^{\circ} \mathrm{C}$		$-5 \ldots+50$

Solenoid valves manifold

Series 3000 EVO - Serial systems

IO-Link protocol interface

IO-Link interface manages 64 inputs and outputs.
Accessory modules can be connected in whatever order and configuration.
Electric power supply and IO-Link connection to the Master are made via M12, male, 5 pins, type A, circular connector, "CLASS B", according to IO-Link specifications.
Electric rails L+/L- supply interface only, while P24/N24 rails supply additional modules and solenoid valves.
Either power supplies are galvanically isolated in the IO-Link interfaces.
IO-Link interface is available in two versions with 32 or 48 outputs allocated to solenoid valves on the manifold directly connected to the node.
Such outputs correspond to least significant bytes and their allocation is independent of how many solenoid valves are installed.
Remaining outputs can be used to control the modules.
Byte allocation to additional modules is fully automatic.

Current limitations

Both stand alone and integrated components must operate within the current limits of the fieldbus node; please note: the solenoid valves are supplied by pin 2 and pin 5 (P24 / N24).
To compute the maximum current on the P24 / N24 supply, please use the following formula::

Coding: 5830.64.VIK

	VERSION
	$32=32$ output bits available for valve connections
$48=48$ output bits available for valve connections	

$n=$ number of installed modules
$I_{\text {out }, i}=$ maximum total current absorbed by the i-th module on the OUTPUTS +24 V
${ }^{\text {DC supply rail (please see specifications of the single module) }}$
$I_{i n, i}=$ maximum total current absorbed by the i-th module on the INPUTS + 24 VDC supply rail (please see specifications of the single module)
$m=$ number of installed solenoid pilots
$i_{E V}=$ mean absorbed current per solenoid pilot (please see table below)

Series	i_EV
3000	36 mA

$=$ maximum total current absorbed by the i-th module on the INPUTS +24 V DC supply rail (please see specifications of the single module)
In case total current is more than 4 A, it is mandatory to supply modules exceeding current limit with power supply module K5030.M12.

Scheme / Overall dimensions and I/O layout

"CLASS B" connector	
PIN	M12A 5P MALE
$\mathbf{1}$	SIGNAL
2	L+
3	P24 (+ 24 V DC)
4	L-
5	C/Q

Technical characteristics		
Specifications		IO-Link Specification v1.1
Case		Reinforced technopolymer
Power supply	Voltage	+ 24 V DC +/-10\%
	Interface current consumption on + 24V DC (L+ / L-)	25 mA
	Power supply diagnosis	Green LED PWR NODE/ Green LED PWR OUT
Communication	Connection	"Class B" port
	Communication speed	38.4 kbaud/s
	Maximum distance from Master	20 m
	Bus diagnosis	Green/red status LED
	Vendor ID / Device ID	1257 (hex 0x04E9) / 3000 (hex 0x0BB8)
Configurations file IODD		Available from our web site http://www.pneumaxspa.com
Protection degree		IP65 when assembled
Temperature ${ }^{\circ} \mathrm{C}$		$-5 \ldots+50$

8 digital inputs module kit M8

M8 digital inputs module provides $8 \mathrm{M8}$, 3 pins, female connectors.
Inputs have PNP logic, $+24 \mathrm{VDC} \pm 10 \%$.
It is possible to connect 2 wires devices (e.g. switches, magnetic limit switches, pressure switches, etc.) as well as 3 wires devices (e.g. proximity sensors, photocells, electronic magnetic limit switches, etc.).

Inputs module power supply is provided by +24 V DC power input on the serial system (type A, 4 pin M12 power connector, pin 1) or by K5030.M12 additional power supply module, in case it were installed upstream of the inputs module.

Technical characteristics	
Maximum current per module	300 mA
Protection	Overcurrent (auto-resettable fuse) Reverse polarity
Input impedence	$3 \mathrm{k} \Omega$
Maximum cable length	$<30 \mathrm{~m}$
Input data allocation	8 bit
INPUTS + 24 VDC current consumption of the module only	5 mA

Scheme / Overall dimensions and I/O layout

8 digital inputs module kit M12

M12 digital inputs module provides 4 M12, 5 pins, female connectors.
Inputs have PNP logic, $+24 \mathrm{VDC} \pm 10 \%$.
Coding: K5230.08.M12
Every connector takes two input channels.
It is possible to connect 2 wires devices (e.g. switches, magnetic limit switches, pressure switches, etc.) as well as 3 wires devices (e.g. proximity sensors, photocells, electronic magnetic limit switches, etc.).

Inputs module power supply is provided by +24 V DC power input on the serial system (type A, 4 pin M12 power connector, pin 1) or by K5030.M12 additional power supply module, in case it were installed upstream of the inputs module.

Technical characteristics	
Maximum current per module	300 mA
Protection	Overcurrent (auto-resettable fuse) Reverse polarity
Input impedence	$3 \mathrm{k} \Omega$
Maximum cable length	$<30 \mathrm{~m}$
Input data allocation	8 bit
INPUTS + 24 VDC current consumption of the module only	5 mA

Scheme / Overall dimensions and I/O layout

Solenoid valves manifold

Series 3000 EVO - Inputs and outputs modules

8 digital outputs module kit M8

M8 digital inputs module provides 8 M8, 3 pins, female connectors.
Outputs have PNP logic, + $24 \mathrm{VDC} \pm 10 \%$.
Outputs module power supply is provided by + 24 VDC power input on the serial system (type A, 4 pins M12 power connector, pin 4) or by K5030.M12 additional power supply module, in case it were installed upstream of the outputs module.
Power supply presence is displayed by "PWR OUT" green LED light-on.
Each output has a LED indicator associated which lights up when output's signal status is high.

Technical characteristics	
Maximum current per output	100 mA
Protection	Short circuit (electronic), trigger at 2.8A
Maximum cable length	$<30 \mathrm{~m}$
Output data allocation	8 bit
OUTPUTS +24 V DC current consumption of the module only	15 mA

Coding: K5130.08.M8

Scheme / Overall dimensions and I/O layout

M8 3P female connector	
PIN	
$\mathbf{1}$	
3	DESCRIPTION
4	N.C.

8 digital outputs module kit M12

M12 digital inputs module provides 4 M12, 5 pins, female connectors.
Outputs have PNP logic, + $24 \mathrm{VDC} \pm 10 \%$.
Outputs module power supply is provided by + 24 VDC power input on the serial system (type A, 4 pins M12 power connector, pin 4) or by K5030.M12 additional power supply module, in case it were installed upstream of the outputs module.
Power supply presence is displayed by "PWR OUT" green LED light-on.
Each output has a LED indicator associated which lights up when output's signal status is high.

Technical characteristics	
Maximum current per output	100 mA
Protection	Short circuit (electronic), trigger at 2.8A
Maximum cable length	$<30 \mathrm{~m}$
Output data allocation	8 bit
OUTPUTS +24 V DC current consumption of the module only	15 mA

Scheme / Overall dimensions and I/O layout

32 digital inputs module kit (37 pins SUB-D connector)

The module provides a SUB-D 37 pins female connector
Inputs have PNP logic, $+24 \mathrm{VDC} \pm 10 \%$.

Coding: K5230.32.37P

32 digital outputs module kit (37 pins SUB-D connector)

The module provides a SUB-D 37 pins female connector.
Outputs have PNP logic, + 24 VDC $\pm 10 \%$.
Outputs module power supply is provided by +24 VDC power input on the serial system (type A, 4 pins M12 power connector, pin 4) or by K5030.M12 additional power supply module, in case it were installed upstream of the outputs module.
Power supply presence is displayed by "PWR OUT" green LED light-on.

Technical characteristics	
Maximum current per output	100 mA
Protection	Short circuit (electronic), trigger at 2.8A
Maximum cable length	$<30 \mathrm{~m}$
Output data allocation	32 bit
OUTPUTS + 24 V DC current consumption of the module only	15 mA

Coding: K5130.32.37P

Scheme / Overall dimensions and I/O layout

Analogue inputs module kit M8

M8 analogue inputs module converts analogue signals into digital signals and transfers acquired data to field bus, via network node.
Inputs module power supply is provided by +24 V DC power input on the serial system (type A, 4 pin M12 power connector, pin 1) or by K5030.M12 additional power supply module, in case it were installed upstream of the inputs module.

Technical characteristics	
Protection (pin 1)	Overcurrent (auto-resettable fuse)
Input impedance (voltage inputs)	$33 \mathrm{k} \Omega$
Digital conversion resolution	12 bit
Maximum cable length	$<30 \mathrm{~m}$
Input data allocation	16 bit per channel
Diagnostic LED	Input signal overcurrent or overvoltage
Accuracy	$0,3 \%$ F.S.
Overall maximum current 2 channels (pin 1)	300 mA
Overall maximum current 4 channels (pin 1)	$750 \mathrm{~mA} \mathrm{(375} \mathrm{~mA} \mathrm{for} \mathrm{each} \mathrm{pair} \mathrm{of} \mathrm{channels)} 10.15 \mathrm{~mA}$
INPUTS + 24 VDC current consumption of the module only	

Coding: K5230.CS

C	CHANNELS
	2=2 channels
	$4=4$ channels
(S)	SIGNAL
	T. $00=$ VOLTAGE (0-10 V$)$
	T. $01=$ VOLTAGE $(0-5 \mathrm{~V})$
	C. $00=$ CURRENT ($4-20 \mathrm{~mA}$)
	C. $01=$ CURRENT ($0-20 \mathrm{~mA}$)

Scheme / Overall dimensions and I/O layout

Analogue outputs module kit M8

M8 analogue outputs module converts output data, received from field bus via network node, into analogue signal. Outputs module power supply is provided by + 24 V DC power input on the serial system (type A, 4 pins M12 power connector, pin 4) or by K5030.M12 additional power supply module, in case it were installed upstream of the outputs module.

Technical characteristics	
Protection (pin 1)	Overcurrent (auto-resettable fuse)
Protection (pin 4)	Overcurrent (auto-resettable fuse)
Digital conversion resolution	12 bit
Maximum cable length	$<30 \mathrm{~m}$
Output data allocation	Output signal overcurrent
Diagnostic LED	$0,3 \%$ F.S.
Accuracy	16 A
Overall maximum current 2 channels (pin 1)	$2 \mathrm{~A}(1$ A for each pair of channels)
Overall maximum current 4 channels (pin 1)	15 mA
INPUTS + 24 V DC current consumption of the module only	35 mA
OUTPUTS + 24 V DC current consumption of the module only (2 channels)	70 mA
OUTPUTS + 24 V DC current consumption of the module only (4 channels)	

Coding: K5130.00

C	CHANNELS
	2 = 2 channels
	$4=4$ channels
(S)	SIGNAL
	T. 00 = VOLTAGE (0-10 V)
	T. $01=$ VOLTAGE (0-5V)
	C. $00=$ CURRENT ($4-20 \mathrm{~mA}$)
	C. 01 = CURRENT ($0-20 \mathrm{~mA}$)

Scheme / Overall dimensions and I/O layout

Pt100 inputs module kit

Pt100 inputs module digitizes signals from Pt100 probes and transfers acquired data to field bus, via network node. It is possible to connect two, three or four wires probes.
Inputs module power supply is provided by +24 V DC power input on the serial system (type A, 4 pin M12 power connector, pin 1) or by K5030.M12 additional power supply module, in case it were installed upstream of the inputs module.

Technical characteristics			
Digital conversion resolution	12 bit		
Maximum cable length	$<30 \mathrm{~m}$		
Input data allocation	16 bitper channel		
Diagnostic LED	Probe presence		
Accuracy	Temperature out of range		
Probe temperature range	$\pm 0,2^{\circ} \mathrm{C}$		
INPUTS + 24 VDC current consumption of the module only (2 channels)	$-100^{\circ} \mathrm{C} \ldots+300^{\circ} \mathrm{C}$		
INPUTS + 24VDC current consumption of the module only (4 channels)	25 mA		
			35 mA

Coding: K5230.OP.0©

\boldsymbol{C}	CHANNELS
	$2=2$ channels
	$4=4$ channels
©	TYPE
	$0=$ Pt1002 wires
	$1=$ Pt1003 wires
	$2=$ Pt100 4 wires

Scheme / Overall dimensions and I/O layout

Additional power supply module kit

Additional power supply module supplies additional electric power for downstream optional modules, where "downstream" means farther from serial node, resetting the current limits of the network node / IO-Link interface

Coding: K5030.M12
Electric connection of the module to external power supply unit occurs via an M12 4 pins type A male connector.
M12 connector has two different pins to power up logics and inputs (Pin 1) and outputs (Pin 4).
Presence of each power supply rail is indicated by corresponding green LED.
When using IO-Link interface, the additional power supply module is useful for separating the module power supplies of input from the output modules placed downstream.

Scheme / Overall dimensions and I/O layout

M12 4P male connector		
PIN	DESCRIPTION	MAX. CURRENT
1	$\begin{gathered} +24 \mathrm{~V} \text { DC } \\ \text { (LOGICS \& INPUTS) } \end{gathered}$	4 A
2	N.C.	-
3	0 V	4 A
4	+ 24 V DC (OUTPUTS)	4 A

Solenoid valves manifold
Series 3000 EVO - Signal management

Signal management

64 INPUT + 64 OUTPUT serial systems - 32 fixed OUTPUT (Ex. PROFIBUS DP and CANopen ${ }^{\text {® }}$)

64 INPUT + 64 OUTPUT serial systems - 48 fixed OUTPUT (Ex. PROFIBUS DP and CANopen ${ }^{\circledR}$)

128 INPUT + 128 OUTPUT serial systems - 48 fixed OUTPUT (Ex. EtherNet/IP - EtherCAT ${ }^{\circledR}$ - PROFINET IO RT)

POWER SUPPLY connectors
Straight connector M12A 4P female
Coding: 5312A.F04.00

PIN	DESCRIPTION
1	$+24 \mathrm{VDC}($ LOGICSAND INPUTS)
2	N.C.
3	0 V
4	+24 VDC (OUTPUTS)

Power supply socket

Upper view slave connector

NETWORK connectors

Straight connector M12A 5P female

Upper view slave connector
Straight connector M12A 5P male

Upper view slave connector

PIN	DESCRIPTION
1	(CAN_SHIELD)
2	(CAN_V+)
3	CAN_GND
4	CAN_H
5	CAN_L

Coding: 5312A.F05.00

Socket for bus CANopen ${ }^{\circledR}$ and IO-Link

Coding: 5312A.M05.00

Plug for bus CANopen ${ }^{*}$

Coding: 5312D.M04.00

PIN	SIGNAL	DESCRIPTION
1	TX+	EtherNet Transmit High
2	RX+	EtherNet Receive High
3	TX-	EtherNet Transmit Low
4	RX-	EtherNet Receive Low

Plug for bus EtherCAT®, PROFINETIO RT and EtherNet/IP

Trademarks: EtherCAT ${ }^{\circledR}$ is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.
Upper view slave connector
Straight connector M12B 5P female

Upper view slave connector
Straight connector M12B 5P male

Upper view slave connector

Coding: 5312B.F05.00

PIN	DESCRIPTION
1	Power Supply
2	A-Line
3	DGND
4	B-Line
5	SHIELD

Coding: 5312A.M05.00
Plug for inputs modules

Upper view slave connector

INPUTS connectors

Straight connector M12A 5P male

PIN	DESCRIPTION
1	+24 VDC
2	INPUTB
3	0 V
4	INPUTA
5	N.C.

Straight connector M8 3P male

Coding: 5308A.M03.00

Plug for inputs modules

M12 plug
Coding: 5300.T12

M8 plug

Coding: 5300.T08

Solenoid valves manifold

Series 2200 Optyma-S EVO

Series 2200 Optyma-S EVO

2200 SERIES Optyma-S EVO SOLENOID VALVES MANIFOLD

- Increased flexibility
- Digital and analogue I/O modules
- Manufactured in technopolymer
- Wide range of communication protocols

CANopen

Ethercat. ${ }^{\text {² }}$
Etheri'et/IP
© IO-Link

WE SPEAK EVO

The Optyma-S series becomes EVO and interfaces with the new PX series modular electronic system while still retaining all of its technical advantages. This is enriched with new features that further extend the flexibility of the product:

- Controls up to 48 electrical signals
- Manifold mounted proportional regulators
- Electro-pneumatic shut-off module

CC-Línk IE Field

Construction characteristics

Body	Technopolymer
Seals	NBR
Hydraulic piston seals	NBR
Springs	Stainless Steel
Operators	Technopolymer
Pistons	Technopolymer
Spools	Stainless Steel

Technical characteristics

Voltage	$+24 \mathrm{VDC} \pm 10 \%$
Pilot consumption	$1,3 \mathrm{~W}$ nominal in energy saving mode
Pilot working pressure (12-14)	from 2,5 to 7 bar max.
Valve working pressure [1]	from vacuum to 10 bar max.
Operating temperature	from $-5^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Protection degree	IP65
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous

Rules and configuration scheme

Note:
When composing the configuration, always bear in mind that the maximum number of electrical signals available is:

- 48 if a serial node or IO-Link interface is used.
- 40 if a 44 -pole multi-pin is used.
- 32 if a 37 -pole multi-pin module is used.
- 24 if a 25 -pole multi-pin module is used.

If a monostable valve is used on a bistable type base (2 electrical signals occupied), an electrical signal is lost.
However, this makes it possible to replace the monostable valve with a bistable valve in the same position.
Diaphragm plugs are used to interrupt ports 1,3 and 5 of the sub-base.
If it is necessary to interrupt more than one port at the same time, put the letters that identify their position in sequence (e.g.: if it is necessary to intercept the ports 3 and 5 you must put the letters YZ).
If one or more ports must be interrupted more than once, the addition of the intermediate supply/discharge module is necessary.

Solenoid valves manifold

Series 2200 Optyma-S EVO - Configurator
pmeumax

Electronic components configurator in technopolymer

Refer to the current limits indicated in the pages relating to the nodes / IO-Link interface

2 positions base module configurator

Accessory module configurator

Solenoid valves manifold

Series 2200 Optyma-S EVO - Configurator

Configuration example of single pneumatic module:

Ø6 Bistable base, intermediate diaphragm on ports 1,3 and $5,2 \times 3 / 2$ NC-NC Solenoid valve with individual power supply accessory 5/2 Solenoid-Solenoid valve

Configuration example of complete group:

- Technopolymer PX3 serial system (P-14-D12-M12-D8G)
- Left endplates - External feeding (E)
- Ø6 Bistable base with (6HF) Solenoid valve
- Ø6 Bistable base with (6IE) Solenoid valve
- Ø4 Monostable base with (3AA) Solenoid valve
- $\varnothing 4$ Monostable base with (3BB) Solenoid valve
- $\varnothing 8$ Bistable base with (8FI) Solenoid valve
- $\varnothing 8$ Bistable base with (8HE) Solenoid valve
- Right endplate closed (U0)

SE-P-I4-D12-M12-D8G-E-6HF-6IE-3AA-3BB-8FI-8HE-U0

DIN rail mounting support plate

\triangleAttention: This must be included when creating the manifold configuration. Exclude the offset compensation plate.

Offset compensation plate

Attention: This accessory is supplied on the manifold unless otherwise stated. This is not compatible for DIN rail mounting.

DIN rail fixing

Supply ports and maximum possible size according to valves used

Serial system node version

Multi-pin version

Manual override actuation

Instable function:

Push to actuate
(when released it moves back to the original position)

Bistable function:

Push and turn to get the bistable function

Note: we recommend the manual override is returned to it's original position when not in use

Solenoid valves installation

Note: Torque moment $0,8 \mathrm{Nm}$

Sub-base assembly

Minimum torque moment: 2 Nm Maximum fixing torque for fittings: $2,5 \mathrm{Nm}$

Solenoid-Spring

Coding: 2241.52.00.39.V
VOLTAGE
(v)
$02=24 \mathrm{VDC}$ PNP
$12=24 \mathrm{VDCNPN}$
$05=24 \mathrm{VAC}$
SHORT FUNCTION CODE"A" Weight 67 g

Solenoid-Differential

Technical characteristics		
Fluid		Filtered air. No lubrication needed, if applied it shall be continuous
Working pressure (bar)		From vacuum to 10
Pilot pressure (bar)		2,5... 7
Temperature ${ }^{\circ} \mathrm{C}$		-5... +50
Flow rate at 6 bar with $\Delta \mathrm{p}=1$ (N//min)	with modular base, tube $\varnothing 4$	140
	with modular base, tubeø6	400
	with modular base, tube $\varnothing 8$	550
	with modular base, tube $\varnothing 10$	850
Responce time according to ISO 12238, activation time (ms)		20
Responce time according to ISO 12238, deactivation time (ms)		25

Coding: 2241.52.00.36.V
VOLTAGE
(v)
$02=24 \mathrm{VDC}$ PNP
$12=24 \mathrm{VDCNPN}$
$05=24 \mathrm{VAC}$
SHORT FUNCTIONCODE"B" Weight 67 g

Solenoid-Solenoid

Technical characteristics		
Fluid		Filtered air. No lubrication needed, if applied it shall be continuous
Working pressure (bar)		From vacuum to 10
Pilot pressure (bar)		2,5 ... 7
Temperature ${ }^{\circ} \mathrm{C}$		$-5 \ldots+50$
Flow rate at 6 bar with $\Delta \mathrm{p}=1(\mathrm{Nl} / \mathrm{min})$	with modular base, tube $\varnothing 4$	140
	with modular base, tube ø6	400
	with modular base, tube $\varnothing 8$	550
	with modular base, tube ø10	900
Responce time according to ISO 12238, activation time (ms)		10
Responce time according to ISO 12238, deactivation time (ms)		10

Coding: 2241.52.00.35.V
\qquad
(v) $02=24 \mathrm{VDCPNP}$ $12=24 \mathrm{VDCNPN}$ HORT FUNCTION CODE "C" Weight 67 g

Solenoid-Solenoid 5/3 (Closed centres)
Coding: 2241.53.31.35.V

VOLTAGE
(v) $02=24 \mathrm{VDC} P \mathrm{PN}$
$12=24 \mathrm{VDCNPN}$ $05=24 \mathrm{VAC}$
SHORT FUNCTION CODE"E" Weight 83 g

Solenoid-Solenoid 2x3/2

Technical characteristics		
Fluid		Filtered air. No lubrication needed, if applied it shall be continuous
Working pressure (bar)		From vacuum to 10
Pilot pressure (bar)		$\geq 3+$ (0,2xinlet pressure)
Temperature ${ }^{\circ} \mathrm{C}$		-5 ... +50
Flow rate at 6 bar with $\Delta p=1$ ($\mathrm{N} /$ / min)	with modular base, tube $\varnothing 4$	140
	with modular base, tube $\varnothing 6$	360
	with modular base, tube $\varnothing 8$	420
	with modular base, tube $\varnothing 10$	650
Responce time according to ISO 12238, activation time (ms)		15
Responce time according to ISO 12238, deactivation time (ms)		25

Example: If inlet pressure is set at 5 bar then pilot pressure must be at least $\mathrm{Pp}=3+(0,2 * 5)=4$ bar

Coding: 2241.62.F.35.V

F	FUNCTION
	44 = NC-NC (5/3 Open centres)
	45 = NC-NO (normally closednormally open)
	$54=$ NO-NC (normally opennormally closed)
	55 = NO-NO (5/3 Pressured centres)
V	VOLTAGE
	$02=24 \mathrm{VDCPNP}$
	$12=24 \mathrm{VDCNPN}$
	$05=24$ VAC

SHORTFUNCTION CODE:
NC-NC (5/3 Open centres) $=$ "F"
 N.C.-N.O. $=$ "H"
N.O.-N.C. $=$ "l"
Weight 75 g

 *

Left Endplate

12/14 SEPARATED FROM PORT 1 Weight 199 g

> 22E0.02.02.S

Right Endplate

Technical characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous
Working pressure (bar)	From vacuum to 10
Temperature ${ }^{\circ} \mathrm{C}$	$-5 \ldots+50$

PORT 82/84= DO NOT PRESSURIZE, SOLENOID PILOTS EXHAUST Weight 148 g

Coding: 22E0.V.S
VERSION
(v) 02 = External feeding

12 = Self-feeding

12/14 CONNECTEDTO PORT 1
Weight 199 g
22E0.12.12.S

Modular base (2 places)

Coding: 22EC.EV

0	TUBE DIAMETER
	$4=\varnothing 4$
	$6=\varnothing 6$
	$8=\varnothing 8$
E	FUNCTION
	01 = Opened ports
	03 = Ports 1-5 separated
	$04=$ Ports 1-3 separated
	$05=$ Ports 5 separated
	$06=$ Separated ports
	07 = Port 1 separated
	08 = Ports 3-5 separated
	$09=$ Ports 3 separated
V	VERSION
	M = for monostable S.V.
	B $=$ for bistable S.V.

Weight 75 g
22E6.eV

Weight 75 g
22E8.EV

High flow rate modular base (2 places)

Technical characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous
Working pressure (bar)	From vacuum to 10
Temperature ${ }^{\circ} \mathrm{C}$	$-5 \ldots+50$

Coding: 22E1.01V

Weight 200 g

the two solenoid valves mounted on the high-flow base are pneumatically and electrically in parallel.
Attention: solenoid valves must be of the same type.
Attention: the additional supply is necessary to guarantee the declared flow values, the port (1), if not supplied, it must be plugged.

Monostable configuration

the monostable base consumes only one electrical signal and can only mount monostable solenoid valves.

Bistable configuration

the bistable base consumes two electrical signals and can mount both bistable and monostable solenoid valves; in the latter case one electrical signal will be lost.

Closing plate
Coding: 2240.00

Technical characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous
Working pressure (bar)	From vacuum to 10
Temperature ${ }^{\circ} \mathrm{C}$	$-5 \ldots+50$

Proportional regulator base

Coding: 22E0.C.RP

3D PRINTING

Weight 120 g

> 22E0.00.RP

Weight 120 g
$3 / 5=$ Exhaust connections

\square

Proportional regulator installation on its base

Technical characteristics

	Pneumatic characteristics
Fluid	Air filtered at 5 micron and dehumidified
Minimum inlet pressure	Desired outlet pressure + 1 bar
Maximum inlet pressure	10 bar
Outlet pressure	$0 . . .9$ bar
Nominal flow rate from 1 to 2 (6 bar $\triangle \mathrm{P} 1$ bar)	$1100 \mathrm{Nl} / \mathrm{min}$
Discharge flow rate (6 bar with 1 bar overpressure)	$1300 \mathrm{Nl} / \mathrm{min}$
Air consumption	$<1 \mathrm{Nl} /$ min
Supply connection	G 1/4"
Operating connection	G 1/4"
Exhaust connection	G 1/8"
Maximum fitting tightening	15 Nm

	Electrical characteristics
Supply voltage	$24 \mathrm{VDC} \pm 10 \%$ (stabilized with ripple<1\%)
Standby current consumption	70 mA
Current consumption with solenoid valves on	400 mA
**Reference Signal \quad Voltage	$\begin{aligned} & { }^{*} 0 \ldots 10 \mathrm{~V} \\ & { }^{*} 0 \ldots 5 \mathrm{~V} \\ & { }^{1} 1 \ldots 5 \mathrm{~V} \end{aligned}$
Current	$\begin{aligned} & \hline{ }^{*} 4 \ldots 20 \mathrm{~mA} \\ & { }^{*} 0 \ldots 20 \mathrm{~mA} \\ & \hline \end{aligned}$
**Inputimpedance Voltage	$10 \mathrm{k} \Omega$
Current	250Ω
**Digital inputs	$24 \mathrm{VDC} \pm 10 \%$
**Digital output	$24 \mathrm{VDC} \mathrm{PNP} \mathrm{(max} \mathrm{current} 50 \mathrm{~mA}$)

Linearity	Functional characteristics
Hysteresis	
Repeatability	\pm Insensitivity
Sensitivity	\pm Insensitivity
Assembly position	\pm Insensitivity
Protection grade	0,01 bar
Ambient temperature	Indifferent

Construction characteristics	
Body	
Shutters	
Diaphragm	Anodized aluminum
Seals	Brass with vulcanized NBR
Coverforelectrical part	Cloth-covered rubber
Springs	NBR
Weight	Technopolymer

* Selectable by keyboard or by RS-232
** Valid only for devices with analog input

Installation/Operation

PNEUMATIC CONNECTION

The compressed air is connected by G $1 / 4^{\prime \prime}$ threaded holes on the body. Before making the connections, eliminate any impurities in the connecting pipes to prevent chippings or dust entering the unit. Do not supply the circuit with more than 10 bar pressure and make sure that the compressed air is dried (excessive condensate could cause the appliance to malfunction) and filtered at 5 micron. The supply pressure to the regulator must always be at least 1 bar greater than the desired outlet pressure. If a silencer is applied to the discharge path the unit response time may change; periodically check that the silencer is not blocked and replace it if necessary

ELECTRICAL CONNECTION

For the electrical connection a SUB-D 15-pole female or a M12 connector is used (accordingly to the model, to be ordered separately). Wire in accordance with the wiring diagram shown below. Warning: INCORRECT CONNECTIONS MAY DAMAGE THE DEVICE

NOTES ON OPERATION

If the electric supply is interrupted, the outlet pressure is maintained at the set value. However, maintaining the exact value cannot be ensured as it is impossible to operate the solenoid valves. In order to discharge the circuit downstream, zero the reference, make sure that the display shows a pressure value equal to zero and then disconnect the electric power supply. A version of the device is available that exhausts the downstream circuit when the power supply is removed (Option " A " at the end of the ordering code). If the compressed-air supply is suspended and the electric power supply is maintained a whirring will be heard that is due to the solenoid valves; an operating parameter can be activated (P18) that triggers the regulator protection whenever the requested pressure is not reached within 4 seconds of the reference signal being sent In this case the system will intervene to interrupt the control of the solenoid valves. Every twenty seconds, the unit will start the reset procedure until standard operating conditions have been restored.

Proportional regulator, standard version with D-SUB connector

TOP VIEW OF THE REGULATOR CONNECTOR

CONNECTOR PINOUT
1 = DIGITAL INPUT
2 = DIGITALINPUT
3 = DIGITALINPUT 3
4 = DIGITAL INPUT 4
5 = DIGITAL INPUT 5
6 = DIGITAL INPUT
= DIGITALINPUT
= DIGITAL INPUT 7
= ANALOG INPUT
9 = SUPPLY (24 VDC)
10 = DIGITAL OUTPUT (24 VDC PNP)
1 = ANALOG OUTPUT (CURRENT)
12 =ANALOG OUTPUT (VOLTAGE)
13 = Rx RS-232
14 = Tx RS-232
$15=$ GND

Proportional regulator, M12 standard version

Proportional regulator, CANopen ${ }^{\circledR}$ version with D-SUB connector

TOP VIEW OFTHE REGULATOR CONNECTOR

CONNECTOR PINOUT:
1 = CAN_SHIELD
$2=$ CAN_V +
$3=$ CAN_GND
$4=$ CAN_H
$5=$ CAN_L
$6=\mathrm{NC}$
$7=N C$
$7=N C$
$8=N C$
$8=\mathrm{NC}$
9 = SUPPLY (+24 VDC)
$10=$ CAN_SHIELD
$11=$ CAN_V +
$12=$ CAN_GND
$13=$ CAN_H
$14=$ CAN L $15=$ GND

Proportional regulator, CANopen ${ }^{\circledR}$ version with M12 connector

Proportional regulator, IO-Link version

CONNECTOR PINOUT:
$1=L+$
$2=+24$ VDC (P24)
3 = L-
$4=C / Q$
$5=$ GND (N24)

Proportional regulator, EtherCAT ${ }^{\circledR}$, PROFINET IO RT and EtherNet/IP version

-4
3

M84P
 MALE

CONNECTOR PINOUT:
= Device logic power supply
$2=$ NC
= GND
4 = Solenoid valves power supply

CONNECTOR PINOUT:
1 = TX Signal + (Ethernet Transmit High) $2=$ RX Signal + (Ethernet Receive High 3 = TX Signal - (Ethernet Transmit Low) $4=$ RX Signal - (Ethernet Receive Low)

M12D 4P
FEMALE

Proportional regulator, standard version with D-SUB connector

Accessories

Model with SUB-D 15 poles connector

Coding: 221E2N.T.D.P.V

TYPE
(T) C = Current signal ($4-20 \mathrm{~mA} / 0-20 \mathrm{~mA}$) $\mathrm{T}=$ Voltage signal ($0-10 \mathrm{~V} / 0-5 \mathrm{~V} / 1-5 \mathrm{~V}$)
PRESSURE RANGE
0001 = from 0 to 1 bar
0005 = from 0 to 5 bar
0009 = from 0 to 9 bar VARIANT
= Standard version
A = Exhaust downstream pressure when power supply is removed

Proportional regulator, CANopen ${ }^{\circledR}$ version with M12 connector

Accessories

Coding:221E2N.M.C.P.V

P	PRESSURE RANGE
	0001 = from 0 to 1 bar
	0005 = from 0 to 5 bar
	0009 = from 0 to 9 bar
(V)	VARIANT
	= Standard Version
	A = Exhaust downstream pressure when power supply is removed

Female straight connector M12A 4P

Network connector

Male straight connector M12A 5P

Proportional regulator, M12 standard version

Coding: 221E2N.(T.U.P.V

(1)	TYPE
	C = Current signal ($4-20 \mathrm{~mA}$)
	T = Voltage signal ($0-10 \mathrm{~V}$)
(U)	OUTPUT
	F = Voltage analogue output
	G = Current analogue output
	H = Digital output
(P)	PRESSURE RANGE
	0001 = from 0 to 1 bar
	0005 = from 0 to 5 bar
	0009 = from 0 to 9 bar
(V)	VARIANT
	= Standard Version
	A = Exhaust downstream pressure when power supply is removed

Proportional regulator, IO-Link version

Accessories

Power supply connector

Female straight connector M12A 4P
Coding: 5312A.F05.00

Proportional regulator, EtherCAT®, PROFINETIORT and EtherNet/IP version

Accessories

Power supply connector
Male straight connector M12D 4P

Coding: 221E2N.T.0009.V

Intermediate electro-pneumatic shut-off module 2/4/6/8 positions

Technical characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous
Working pressure (bar)	From vacuum to 10
Temperature ${ }^{\circ} \mathrm{C}$	$3 \ldots 7$ (piloting 12/14)
Feeding	$-5 \ldots+50$
Protection	$+24 \mathrm{VDC} \pm 10 \%$
Maximum load	Inverted polarity protection
Indicators	100 mA
Series modules maximum number	+24 VDC presence LED

Coding: 22E0.(D.T.C

(1)	MODULE
	$10=12-14$ open
	11 = 12-14 closed
(1)	SHUT-OFF
	2A $=2$ Signals
	$4 \mathrm{~A}=4$ Signals
	$6 A=6$ Signals
	$8 \mathrm{~A}=8$ Signals
C	CONNECTION
	M8 = M8
	M12 $=$ M12

1

Weight 120 g

WORKING PRINCIPLE / SIMPLIFIED FUNCTIONAL DIAGRAM

intermediate electro-pneumatic shut-off module allows you to interrupt at the same time the first $2,4,6$ or 8 available command signals for the valves after the module itself.
When the shut-off module is present, the controlled output logic signal values are equal to the input logic signal values which came from the serial node or the multi-pin module.
If the supply input signal is absent, the controlled output logic signal values are all equal to zero. This module is particularly useful when control signals are used to block the valves; it is also effective both with serial management and multi-pin connection of the manifolds.
It is possible to use more modules to interrupt every command signals simply by inserting them before the signals to be interrupted.

PIN 1	
IN 1	OUT 1
IN 2	OUT 2
IN 3	OUT 3
IN 4	OUT 4
IN 5	OUT 5
IN 6	OUT 6
IN 7	OUT 7
IN 8	OUT 8
IN...	OUT ...
IN 48	OUT 48

PIN 1	
IN 1	OUT 1
IN 2	OUT 2
IN 3	OUT 3
IN 4	OUT 4
IN 5	OUT 5
IN 6	OUT 6
IN 7	OUT 7
IN 8	OUT 8
IN.	OUT ...
IN 48	OUT 48

PIN 1		
IN 1	$\omega_{0}, 0$	OUT 1
IN 2	$0-10$	OUT 2
IN 3	$9-0$	OUT 3
IN 4	$0-10$	OUT 4
IN 5	$9-0$	OUT 5
IN 6		OUT 6
$\text { IN } 7$	$0^{\circ} 0$	$\text { OUT } 7$
$\text { IN } 8$	\bigcirc	$\text { OUT } 8$
IN ...		OUT ...
IN 48		OUT 48

Solenoid valves manifold

Series 2200 Optyma-S EVO

Usage examples

EXAMPLE 1

Manifold of 10 solenoid valves on which you want to interrupt signals 9 and 10 .
Assembly:

- 4 bistable solenoid valves (not interruptible because before the module)
- 1 intermediate electro-pneumatic shut-off module, 2 signals M8 with conduit 12/14 closed
- 2 monostable solenoid valves (interruptible)
- 4 bistable solenoid valves (managed directly by the corresponding command signal)

EXAMPLE 2

Manifold of 10 solenoid valves on which you want to interrupt signals 9 and 12.
Assembly:

- 4 bistable solenoid valves (not interruptible because before the module)
- 1 intermediate electro-pneumatic shut-off module, 4 signals M8 with conduit 12/14 closed
- 2 monostable solenoid valves (interruptible)
- 4 bistable solenoid valves (the first one is interruptible, the others are managed directly by the corresponding command signal)

EXAMPLE 3

Manifold of 20 solenoid valves on which you want to interrupt signals from 9 to 16 and 23 to 26 .
Assembly:

- 4 bistable solenoid valves (not interruptible because before the module)
- 1 intermediate electro-pneumatic shut-off module, 8 signals M12 with conduit 12/14 open
- 2 monostable solenoid valves (interruptible)
- 6 bistable solenoid valves (the first three are interruptible, the others are managed directly by the corresponding command signal)
- 1 intermediate electro-pneumatic shut-off module, 4 signals M8 with conduit 12/14 closed
-8 bistable solenoid valves (the first two are interruptible, the others are managed directly by the corresponding command signal)

Key
S.V. electrically managed by the shut-off module:
S.V. pneumatically managed $(12 / 14)$ by the shut-off module:

Intermediate inlet/Exhaust module with external pilot

Technical characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous
Working pressure (bar)	From vacuum to 10
Temperature ${ }^{\circ} \mathrm{C}$	$3 \ldots 7$ (piloting 12/14)

Coding: 22E0.(1)
MODULE
(M) $10=12-14$ open

11 = 12-14 closed

Weight 111 g
22E0.10

Weight 111 g
22E0.11

Coding: SPLR.D
Diaphragm plug
Coding: 2230.17

| TUBEDIAMETER |
| :--- | :--- |

(D) $6=6 \mathrm{~mm}$
$10=10 \mathrm{~mm}$

Tie-rod M3
Coding: 2240.KD. 00

DIN rail adapter
Coding: 22E0.P1

Offset compensation plate

[^0]
Series 2500 Optyma-F EVO

2500 SERIES Optyma-F EVO SOLENOID VALVES MANIFOLD

- Increased flexibility
- Digital and analogue I/O modules
- Manufactured in technopolymer
- Wide range of communication protocols

CANopen

 Tintiti© IO-Link

EtherCAT. ${ }^{\boldsymbol{*}}$

Etheri'et/IP

WE SPEAK EVO

The Optyma-F series becomes EVO and interfaces with the new PX series modular electronic system while still retaining all of its technical advantages. This is enriched with new features that further extend the flexibility of the product:

- Flow rate of $1000 \mathrm{NI} / \mathrm{min}$
- Quick assembly using rotating pins
- Operating using different pressures and vacuum

CC-Línk IE Field
 Basic

Construction characteristics

Body	Technopolymer
Seals	NBR
Hydraulic piston seals	NBR
Springs	Stainless Steel
Operators	Technopolymer
Pistons	Technopolymer
Spools	Technopolymer

Technical characteristics

Voltage	$+24 \mathrm{VDC} \pm 10 \%$
Pilot consumption	$1,3 \mathrm{~W}$
Pilot working pressure (12-14)	from 3 up to 7 bar max.
Valve working pressure [1]	from vacuum to 10 bar max.
Operating temperature	from $-5^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Protection degree	IP65
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous

Rules and configuration scheme

Configurable on Cadenas platform

\bigcirc CADENAS

Note:

When composing the configuration, always bear in mind that the maximum number of electrical signals available is:

- 32 if a 37-pole multi-pin module, a serial node or IO-Link interface are used
- 24 if a 25 -pole multi-pin module is used.

If a monostable valve is used on a bistable type base (2 electrical signals occupied), an electrical signal is lost.
However, this makes it possible to replace the monostable valve with a bistable valve in the same position.
Diaphragm plugs are used to interrupt ports 1, 3 and 5 of the sub-base.
If it is necessary to interrupt more than one port at the same time, put the letters that identify their position in sequence
(e.g.: if it is necessary to intercept the ports 3 and 5 you must put the letters YZ).

If one or more ports must be interrupted more than once, the addition of the intermediate supply/discharge module is necessary.

Electronic components configurator in technopolymer

Repeating numbers of the module
Indicate the number of repeats of the same module
Indicate the number of repeat
(no value for a single module)

Inputs module - Analog / Digital (EXCLUDED WITH MP)
D8 8 M8 digital inputs module

D3 32 digital inputs SUB-D 37 poles

2 analogue inputs $0-10 \mathrm{~V}$ module (voltage signal)
T3 4 analogue inputs $0-5 \mathrm{~V}$ module (voltage signal)

C1 2 analogue inputs $0-20 \mathrm{~mA}$ module (current signal)
C2 2 analogue inputs $4-20 \mathrm{~mA}$ module (current signal)

C4 4 analogue inputs $4-20 \mathrm{~mA}$ module (current signal)

2 Pt100 3 wires inputs module
2 Pt100 4 wires inputs module

4 Pt100 3 wires inputs module
utputs module - Analog / Digita

M8	8 M8 digital outputs module
M12	8 M12

M3 32 digital outputs SUB-D 37 poles
V1 2 analogue outputs 0-5V module (voltage signal)

V4 4 analogue outputs $0-10 \mathrm{~V}$ module (voltage signal)

L3 4 analogue outputs $0-20 \mathrm{~mA}$ module (current signal)

L4 4 analogue outputs 4-20mA module (current signa)

P12 M12 additional power supply module

Refer to the current limits indicated in the pages relating to the nodes / IO-Link interface

Solenoid valves manifold

Series 2500 Optyma-F EVO-Configurator

Modules configurator

Base module configurator with Solenoid valve

Accessory module configurator

Intermediate inlet/Exhaust module
W Separated power supply and exhaust

Intermediate electropneumatic shut-off module			
U	Separated power supply and exhaust	2	2 positions
		4	4 positions
	6	6 positions	
	Separated power supply, exhaust and 12/14 piloting	2	2 positions
		4 positions	
		6 positions	
	8	8 positions	

Intermediate electropneumatic shut-off module 2 positions

Configuration example of complete group:

- Technopolymer PX3 serial system (P-A4-M12-M8-P4)
- Left endplates - External feeding (E)
- Bistable base with (F2) Solenoid valve
- Bistable base with (C2) Solenoid valve
- Monostable base with (A1) Solenoid valve
- Bistable base with (E2) Solenoid valve
- Bistable base with (C2) Solenoid valve
- Monostable base with (B1) Solenoid valve
- Right endplates closed (U0)

DIN rail mounting support plate

\triangle
Attention: This must be included when creating the manifold configuration. Exclude the offset compensation plate.

Offset compensation plate

1
Attention: This accessory is supplied on the manifold unless otherwise stated. This is not compatible for DIN rail mounting.

DIN rail fixing

Multi-pin version

Supply ports and maximum possible size according to valves used

Serial system node version

Manual override actuation

Instable function:

Push to actuate
(when released it moves back to the original position)

Bistable function:

Push and turn to get the bistable function

Note: we recommend the manual override is returned to it's original position when not in use

Solenoid valves installation

Note: Torque moment 1 Nm

Sub-base assembly

Solenoid-Spring

Technical characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous
Working pressure (bar)	
Pilot pressure (bar)	From vacuum to 10
Temperature ${ }^{\circ} \mathrm{C}$	$3 \ldots 7$
Flow rate at 6 bar with $\Delta \mathrm{p}=1$ (NI/min)	$-5 \ldots+50$
Responce time according to ISO 12238, activation time (ms)	1000
Responce time according to ISO 12238, deactivation time (ms)	14

Coding: 2531.52.00.39.V
VOLTAGE
(v)
$02=24 \mathrm{VDC}$ PNP
$12=24 \mathrm{VDCNPN}$
$05=24$ VAC
SHORT FUNCTION CODE "A"
Weight 123 g

Solenoid-Differential

Technical characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous
Working pressure (bar)	
Pilot pressure (bar)	From vacuum to 10
Temperature ${ }^{\circ} \mathrm{C}$	$3 \ldots 7$
Flow rate at 6 bar with $\Delta \mathrm{p}=1(\mathrm{NI} / \mathrm{min})$	$-5 \ldots+50$
Responce time according to ISO 12238, activation time (ms)	1000
Responce time according to ISO 12238, deactivation time (ms)	20

Coding: 2531.52.00.36.V
(v) $02=24$ VDC PNP
$12=24$ VDC NPN
$05=24$ VAC
SHORT FUNCTION CODE "B"
Weight 120 g

Solenoid-Solenoid

Technical characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous
Working pressure (bar)	From vacuum to 10
Pilot pressure (bar)	$3 \ldots 7$
Temperature ${ }^{\circ} \mathrm{C}$	$-5 \ldots+50$
Flow rate at 6 bar with $\Delta \mathrm{p}=1(\mathrm{NI} / \mathrm{min})$	1000
Responce time according to ISO 12238 , activation time (ms)	10
Responce time according to ISO 12238, deactivation time (ms)	14

Coding: 2531.52.00.35.V

\vee	VOLTAGE
	$02=24 \mathrm{VDCPNP}$
	$12=24 \mathrm{VDCNPN}$
	$05=24 \mathrm{VAC}$

SHORTFUNCTION CODE "C"
Weight 128 g

Technical characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous
Working pressure (bar)	
Pilot pressure (bar)	From vacuum to 10
Temperature ${ }^{\circ} \mathrm{C}$	$2,5 \ldots 7$
Flow rate at 6 bar with $\Delta \mathrm{p}=1(\mathrm{NI} / \mathrm{min})$	$-5 \ldots+50$
Responce time according to ISO 12238 , activation time (ms)	600
Responce time according to ISO 12238 , deactivation time (ms)	15

VOLTAGE
0 $02=24 \mathrm{VDC}$ PN
$12=24 \mathrm{VDCNPN}$ $05=24 \mathrm{VAC}$

SHORT FUNCTION CODE "E"
Weight 126 g

Solenoid-Solenoid 2x3/2

Technical characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous
Working pressure (bar)	From vacuum to 10
Pilot pressure (bar)	$\geq 3+(0,2 \times$ Inlet pressure $)$
Temperature ${ }^{\circ} \mathrm{C}$	$-5 \ldots+50$
Flow rate at 6 bar with $\Delta \mathrm{p}=1(\mathrm{NI} / \mathrm{min})$	700
Responce time according to ISO 12238, activation time (ms)	15
Responce time according to ISO 12238, deactivation time (ms)	25

[^1]

Coding: 2531.62.©.35.V

> | FUNCTION |
| :--- |
| $44=$ NC-NC (5/3 Open centres) | $45=$ NC-NO (normally closed-

F
normally open)
54 = NO-NC (normally opennormally closed) 55 = NO-NO (5/3 Pressured centres)

- 0 $02=24 \mathrm{VDC}$ PNP $12=24$ VDC NPN $05=24 \mathrm{VAC}$
SHORT FUNCTION CODE:
SHORT (5/3Open centres)="F"
NC-NC (5/3 Open centres) $=$ "F"
N.O. - N.O. ($5 / 3$ Pressured centres) $=" G "$
N.O. - N.O.
N.C.-N.O. $=" H " 10$
N.C.-N.O. $=" \mathrm{H}$
N.O.-N.C. $=1 "$

Weight $115,5 \mathrm{~g}$

Left Endplate

Technical characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous
Working pressure (bar)	From vacuum to 10 (external feeding)
Pilot pressure (bar)	$3 \ldots 7$ (selffeeding)
Temperature ${ }^{\circ} \mathrm{C}$	$3 \ldots 7$ (external feeding)

12/14 SEPARATED FROM PORT 1 Weight 206 g

25E0.02.F

12/14CONNECTEDTOPORT 1
Weight 206 g
25E0.12.F

Coding: 25E0.V.F
VERSION
(v)

02 = External feeding
12 = Self-feeding

.14

คค

Right Endplate

Technical characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous
Working pressure (bar)	From vacuum to 10
Temperature ${ }^{\circ} \mathrm{C}$	$-5 \ldots+50$

Working pressure (bar)

Temperature ${ }^{\circ} \mathrm{C}$

PORT $82 / 84$ = DO NOT PRESSURIZE, SOLENOID PILOTS EXHAUST
Weight $181,5 \mathrm{~g}$
2530.03 .00

Modular base Coding: 2530.01V

Fluid
Working pressure (bar)
Temperature ${ }^{\circ} \mathrm{C}$

Technical characteristics
From vacuum to 10
$-5 \ldots+50$

Closing plate

Technical characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous
Working pressure (bar)	From vacuum to 10
Temperature ${ }^{\circ} \mathrm{C}$	$-5 \ldots+50$

Intermediate inlet/Exhaust module with external pilot

Technical characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous
Working pressure (bar)	
Pilot pressure (bar)	From vacuum to 10
Temperature ${ }^{\circ} \mathrm{C}$	$3 \ldots 7$

SHORT CODE "K"
Weight 162 g

Intermediate electro-pneumatic shut-off module 2/4/6/8 positions

Technical characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous
Working pressure (bar)	From vacuum to 10
Temperature ${ }^{\circ} \mathrm{C}$	$3 \ldots 7$ (piloting $12 / 14$)
Feeding	$-5 \ldots+50$
Protection	$+24 \mathrm{VDC} \pm 10 \%$
Maximum load	Inverted polarity protection
Indicators	100 mA
Series modules maximum number	+24 VDC presence LED

(1)	MODULE
	10 = Supply and exhaust
	11 = Supply and exhaust with separate pilot
(1)	SHUT-OFF
	$2 \mathrm{~A}=2$ Signals
	$4 \mathrm{~A}=4$ Signals
	$6 \mathrm{~A}=6$ Signals
	$8 \mathrm{~A}=8$ Signals

Weight 163 g
2530.11. 1

WORKING PRINCIPLE / SIMPLIFIED FUNCTIONAL DIAGRAM

Intermediate electro-pneumatic shut-off module allows you to interrupt at the same time the first $2,4,6$ or 8 available command signals for the valves after the module itself.
When the shut-off module is present, the controlled output logic signal values are equal to the input logic signal values which came from the serial node or the multi-pin module.
If the supply input signal is absent, the controlled output logic signal values are all equal to zero. This module is particularly useful when control signals are used to block the valves; it is also effective both with serial management and multi-pin connection of the manifolds.
It is possible to use more modules to interrupt every command signals simply by inserting them before the signals to be interrupted.

PIN 1	
IN 1	OUT 1
IN 2	OUT 2
IN 3	OUT 3
IN 4	OUT 4
IN 5	OUT 5
IN 6	OUT 6
IN 7	OUT 7
IN 8	OUT 8
IN ...	OUT ...
IN 32	OUT 32

PIN 1		
IN 1		OUT 1
IN 2	$\square^{-0} 0$	OUT 2
IN 3	$\bigcirc 0$	OUT 3
IN 4	$\bigcirc 0$	OUT 4
IN 5		OUT 5
IN 6		OUT 6
IN 7		OUT 7
IN 8		OUT 8
IN ...		OUT...
IN 32		OUT 32

PIN 1		
IN 1	$0-0$	OUT 1
IN 2	\square^{-2}	OUT 2
IN 3	$\square^{-} 0$	OUT 3
IN 4	${ }^{-2} 0$	OUT 4
IN 5	$\square^{-1} 0$	OUT 5
IN 6	-2	OUT 6
IN 7	\bigcirc	OUT 7
IN 8	$\cdots{ }^{-}$	OUT 8
IN ...		OUT ...
IN 32		OUT 32

Solenoid valves manifold

Series 2500 Optyma-F EVO

Usage examples

EXAMPLE 1

Manifold of 12 monostable solenoid valves on which you want to interrupt signals 7-8.
Assembly:

- 6 monostable solenoid valves (not interruptible because before the module)
- 1 additional power supply module
- 6 monostable solenoid valves

Note: the first 2 of these 6 monostable solenoid valves are interruptible by the module, while the following 4 will work correctly managed directly by the corresponding command signals.

EXAMPLE 2

Manifold of 12 monostable solenoid valves on which you want to interrupt signals 7-8-9.
Assembly:

- 6 monostable solenoid valves (not interruptible because before the module)
- 1 additional power supply module
- 3 monostable solenoid valves (interruptible)
- 1 closing plate mounted on a monostable base
- 3 monostable solenoid valves (work correctly managed directly by the corresponding command signals)

EXAMPLE 3

Manifold of 7 monostable and 3 bistable solenoid valves in which you want to interrupt signals 2-3-4-5 and 8-9-10-11.
Assembly:

- 1 monostable solenoid valve (not interruptible because before the module)
- 1 additional electro-pneumatic shut-off module
- 6 monostable solenoid valves

Note: the first 4 of these 6 monostable solenoid valves are interruptible by the module, while the following 2 will work correctly managed directly by the corresponding command signals.
Note no. 2: The pilots of the 6 solenoid valves downstream of the intermediate electro-pneumatic shut-off module are pneumatically powered by the module itself.

- 1 additional electro-pneumatic shut-off module
- 3 bistable solenoid valves

Note no. 3: the first 2 of these 3 bistable solenoid valves are interruptible by the module, while the following will work correctly and are man-
aged directly by the corresponding command signals.
Note no. 4: The pilots of the 3 solenoid valves downstream of the intermediate electro-pneumatic shut-off module are pneumatically powered by the module itself.

Key
S.V. electrically managed by the shut-off module:
S.V. pneumatically managed (12/14) by the shut-off module:

Weight 116 g

DIN rail adapter

Weight 12 g
Polyethylene Silencer Series SPL-P
Coding: SPLP.D
TUBE DIAMETER
(1) $18=1 / 8^{\prime \prime}$
(1) $14=1 / 4^{\prime \prime}$
$38=3 / 8^{\prime \prime}$

Diaphragm plug

Solenoid valves manifold

Series 2500 Optyma-T EVO

Series 2500 Optyma-T EVO

2500 SERIES Optyma-T EVO SOLENOID VALVES MANIFOLD

- Increased flexibility
- Digital and analogue I/O modules
- Manufactured in technopolymer
- Wide range of communication protocols

CANopen

PRPF! ${ }^{\circ}$ TBDE

WE SPEAK EVO

The Optyma-T series becomes EVO and interfaces with the new PX series modular electronic system while still retaining all of its technical advantages. This is enriched with new features that further extend the flexibility of the product:

- Flow rate of $750 \mathrm{NI} / \mathrm{min}$
- Assembly with tie rods kit
- Operating using different pressures and vacuum
- Electro-pneumatic shut-off module

Etherivet/IP
© IO-Link

CC-Línk IE Field

Construction characteristics

Body	Technopolymer
Seals	NBR
Hydraulic piston seals	NBR
Springs	Stainless Steel
Operators	Technopolymer
Pistons	Technopolymer
Spools	Technopolymer

Technical characteristics

Voltage	$+24 \mathrm{VDC} \pm 10 \%$
Pilot consumption	$1,3 \mathrm{~W}$
Pilot working pressure (12-14)	from 3 up to 7 bar max.
Valve working pressure [1]	from vacuum to 10 bar max.
Operating temperature	from $-5^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Protection degree	IP65
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous

Rules and configuration scheme

Configurable on Cadenas platform

O CADENAS

Note:

When composing the configuration, always bear in mind that the maximum number of electrical signals available is:

- 32 if a 37 -pole multi-pin module, a serial node or IO-Link interface are used.
- 24 if a 25 -pole multi-pin module is used.

If a monostable valve is used on a bistable type base (2 electrical signals occupied), an electrical signal is lost.
However, this makes it possible to replace the monostable valve with a bistable valve in the same position.
Diaphragm plugs are used to interrupt ports 1,3 and 5 of the sub-base.
If it is necessary to interrupt more than one port at the same time, put the letters that identify their position in sequence
(e.g.: if it is necessary to intercept the ports 3 and 5 you must put the letters YZ).

If one or more ports must be interrupted more than once, the addition of the intermediate supply/discharge module is necessary.

Solenoid valves manifold

Series 2500 Optyma-T EVO - Configurator

Electronic components configurator in technopolymer

Refer to the current limits indicated in the pages relating to the nodes / IO-Link interface

Modules configurator

Base module configurator with Solenoid valve

Accessory module configurator

Configuration example of single module:

Bistable base, $5 / 2$ Solenoid-Solenoid valve
Intermediate electropneumatic shut-off module 2 positions

Configuration example of complete group:

- Technopolymer PX3 serial system (P-N4-D8-M8-C1)
- Left endplates - External feeding (E)
- Bistable base with (F6) Solenoid valve
- Monostable base with (B3) Solenoid valve
- Bistable base with (E6) Solenoid valve
- Monostable base with (A5) Solenoid valve
- Monostable base with (A3) Solenoid valve
- Monostable base with (B1) Solenoid valve
- Bistable base with (C4) Solenoid valve
- Monostable base with (B3) Solenoid valve
- Right endplates closed (U0)

Supply ports and maximum possible size according to valves used

Multi-pin version

Manual override actuation

Instable function:

Push to actuate
(when released it moves back to the original position)

Bistable function:
Push and turn to get the bistable function

Note: we recommend the manual override is returned to it's original position when not in use

Solenoid valves installation

Note: Torque moment 1 Nm

Sub-base assembly

	VOLTAGE
	$02=24 \mathrm{VDC}$ PNP
$12=24 \mathrm{VDC} \mathrm{NPN}$	
	$05=24 \mathrm{VAC}$

SHORT FUNCTION CODE "A" Weight 129 g

Solenoid-Solenoid

Technical characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous
Working pressure (bar)	From vacuum to 10
Pilot pressure (bar)	$3 \ldots 7$
Temperature ${ }^{\circ} \mathrm{C}$	$-5 \ldots+50$
Flow rate at 6 bar with $\Delta \mathrm{p}=1(\mathrm{NI} / \mathrm{min})$	750
Response time according to ISO 12238 , activation time (ms)	10
Response time according to ISO 12238, deactivation time (ms)	14

Coding: 2541.52.00.35.V

SHORT FUNCTION CODE "C"
Weight 134 g

Solenoid-Solenoid 5/3

Technical characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous
Working pressure (bar)	From vacuum to 10
Pilot pressure (bar)	2,5 ... 7
Temperature ${ }^{\circ} \mathrm{C}$	$-5 \ldots+50$
Flow rate at 6 bar with $\Delta \mathrm{p}=1$ ($\mathrm{N} / / \mathrm{min}$)	600
Responce time according to ISO 12238, activation time (ms)	15
Responce time according to ISO 12238, deactivation time (ms)	20

Coding: 2541.53.31.35.V
VOLTAGE
$02=24 \mathrm{VDC} \operatorname{PNP}$
$12=24$ VDC NPN
$05=24 \mathrm{VAC}$
SHORT FUNCTION CODE"E"
Weight 132 g

Solenoid-Solenoid 2x3/2

Technical characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous
Working pressure (bar)	From vacuum to 10
Pilot pressure (bar)	$\geq 3+(0,2 \times$ nnlet pressure)
Temperature ${ }^{\circ} \mathrm{C}$	$-5 \ldots+50$
Flow rate at 6 bar with $\Delta \mathrm{p}=1(\mathrm{NI} / \mathrm{min})$	700
Responce time according to ISO 12238, activation time (ms)	15
Responce time according to ISO 12238, deactivation time (ms)	25

Example: If inlet pressure is set at 5 bar then pilot pressure must be at least $\mathrm{Pp}=2,5+(0,2 * 5)=3,5 \mathrm{bar}$

Coding: 2541.62.F.35.V

F	FUNCTION
	44 = NC-NC (5/3 Open centres)
	$45=$ NC-NO (normally closednormally open)
	$54=$ NO-NC (normally opennormally closed)
	55 = NO-NO (5/3 Pressured centres)
(v)	VOLTAGE
	$02=24 \mathrm{VDCPNP}$
	$12=24 \mathrm{VDCNPN}$
	$05=24 \mathrm{VAC}$
Weig	t 122 g

Left Endplate

12/14 SEPARATED FROM PORT 1

Weight 300 g
25E0.02.T

Coding: 2540.03.©
C ELECTRICALCONNECTION
00 = Electrical connection
12/14 CONNECTED TO PORT 1
Weight 300 g
25E0.12.T

Right Endplate

Technical characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous
Working pressure (bar)	From vacuum to 10
Temperature ${ }^{\circ} \mathrm{C}$	$-5 \ldots+50$

PORT 82/84 = DO NOT PRESSURIZE, SOLENOID PILOTS EXHAUST
Weight 274 g
2540.03. \mathbf{C}

Modular base

Weight $96,5 \mathrm{~g}$

Technical characteristics	
	Filtered air. No lubrication needed, if applied it shall be continuous
	From vacuum to 10
	$-5 \ldots+50$

Coding: 254C.01V

Closing plate
Coding: 2530.00

Technical characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous
Working pressure (bar)	From vacuum to 10
Temperature ${ }^{\circ} \mathrm{C}$	$-5 \ldots+50$

Intermediate Inlet/Exhaust module

Technical characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous
Working pressure (bar)	
Temperature ${ }^{\circ} \mathrm{C}$	From vacuum to 10

SHORT CODE "K"
Weight 173 g

Intermediate electro-pneumatic shut-off module 2/4/6/8 positions

Technical characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous
Working pressure (bar)	From vacuum to 10
Temperature ${ }^{\circ} \mathrm{C}$	$3 \ldots 7$ (piloting $12 / 14$)
Feeding	$-5 \ldots+50$
Protection	$+24 \mathrm{VDC} \pm 10 \%$
Maximum load	Inverted polarity protection
Indicators	100 mA
Series modules maximum number	+24 VDC presence LED

Coding: 2540.(1.T

(1)	MODULE
	10 = Supply and exhaust
	11 = Supply and exhaust with separate pilot
(1)	SHUT-OFF
	$2 \mathrm{~A}=2$ Signals
	$4 \mathrm{~A}=4$ Signals
	$6 A=6$ Signals
	$8 \mathrm{~A}=8$ Signals

2540.11.

WORKING PRINCIPLE / SIMPLIFIED FUNCTIONAL DIAGRAM

Intermediate electro-pneumatic shut-off module allows you to interrupt at the same time the first $2,4,6$ or 8 available command signals for the valves after the module itself.
When the shut-off module is present, the controlled output logic signal values are equal to the input logic signal values which came from the serial node or the multi-pin module.
If the supply input signal is absent, the controlled output logic signal values are all equal to zero. This module is particularly useful when control signals are used to block the valves; it is also effective both with serial management and multi-pin connection of the manifolds.
It is possible to use more modules to interrupt every command signals simply by inserting them before the signals to be interrupted.

PIN 1	
IN 1	OUT 1
IN 2	OUT 2
IN 3	OUT 3
IN 4	OUT 4
IN 5	OUT 5
IN 6	OUT 6
IN 7	OUT 7
IN 8	OUT 8
IN...	OUT ...
IN 32	OUT 32

PIN 1		
IN 1		OUT 1
IN 2	$0^{-1} 0$	OUT 2
IN 3	${ }^{-} 0$	OUT 3
IN 4	${ }^{-2} 0$	OUT 4
IN 5	$0^{-} 0$	OUT 5
IN 6	$\square^{-1} 0$	OUT 6
IN 7	0^{-1}	OUT 7
IN 8	$\bigcirc{ }^{-1}$	OUT 8
IN		OUT.
IN 32		OUT 32

Usage examples

EXAMPLE 1
Manifold of 12 monostable solenoid valves on which you want to interrupt signals 7-8.
Assembly:

- 6 monostable solenoid valves (not interruptible because before the module)
- 1 additional power supply module
- 6 monostable solenoid valves

Note: the first 2 of these 6 monostable solenoid valves are interruptible by the module, while the following 4 will work correctly managed directly by the corresponding command signals.

EXAMPLE 2

Manifold of 12 monostable solenoid valves on which you want to interrupt signals 7-8-9.
Assembly:

- 6 monostable solenoid valves (not interruptible because before the module)
- 1 additional power supply module
- 3 monostable solenoid valves (interruptible)
- 1 closing plate mounted on a monostable base
- 3 monostable solenoid valves (work correctly managed directly by the corresponding command signals)

EXAMPLE 3

Manifold of 7 monostable and 3 bistable solenoid valves in which you want to interrupt signals 2-3-4-5 and 8-9-10-11.
Assembly:

- 1 monostable solenoid valve (not interruptible because before the module)
- 1 additional electro-pneumatic shut-off module
- 6 monostable solenoid valves

Note: the first 4 of these 6 monostable solenoid valves are interruptible by the module, while the following 2 will work correctly managed directly by the corresponding command signals.
Note no. 2: The pilots of the 6 solenoid valves downstream of the intermediate electro-pneumatic shut-off module are pneumatically powered by the module itself.

- 1 additional electro-pneumatic shut-off module
- 3 bistable solenoid valves

Note no. 3: the first 2 of these 3 bistable solenoid valves are interruptible by the module, while the following will work correctly and are managed directly by the corresponding command signals.
Note no. 4: The pilots of the 3 solenoid valves downstream of the intermediate electro-pneumatic shut-off module are pneumatically powered by the module itself.

Key

S.V. electrically managed by the shut-off module:
S.V. pneumatically managed (12/14) by the shut-off module:

Extension (1 Position)
Coding: 2540.KP. 01
The Kit includes 2 pieces Weight $3,5 \mathrm{~g}$

Tie-rod M4

P	NO. POSITIONS
	$01=$ Nr. 1 Position
	$02=$ Nr. 2 Positions
	$03=$ Nr. 3 positions
	$04=$ Nr. 4 Positions
	$05=$ Nr. 5 positions
	$06=\mathrm{Nr} .6$ Positions
	$07=$ Nr. 7 positions
	$08=$ Nr. 8 Positions
	$09=$ Nr. 9 positions
	$10=\mathrm{Nr} .10$ Positions
	$11=\mathrm{Nr} .11$ positions
	$12=$ Nr. 12 Positions
	$13=\mathrm{Nr} .13$ positions
	$14=\mathrm{Nr} .14$ Positions
	...
	$32=$ Nr. 32 Positions

Series 2700 EVO

2700 SERIES EVO SOLENOID VALVES MANIFOLD

- Increased flexibility
- Digital and analogue I/O modules
- Manufactured according to ISO 15407-2
- Wide range of communication protocols

CANopen

PRPR ${ }^{\circ}$
© IO-Link

WE SPEAK EVO

The 2700 series becomes EVO and interfaces with the new PX series modular electronic system while still retaining all of its technical advantages. This is enriched with new features that further extend the flexibility of the product:

- Size 26 mm with nominal flow rate up to 1000 NI/min
- Compliant to directive 2014/30/UE
- Monitored solenoid valves
- Vertical configuration

CC-Línk IE Field

Construction characteristics

Body	Die-cast aluminium
Springs	Stainless Steel
Operators	Technopolymer
Pistons	Technopolymer
Spools	Aluminium

Technical characteristics

Voltage	$+24 \mathrm{~V} \mathrm{DC} \pm 10 \%$ PNP
Pilot consumption	$1 \mathrm{~W}-2.3 \mathrm{~W}$
Valve working pressure [1]	from vacuum to 10 bar max.
Operating temperature	from $-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Protection degree	IP65
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous
	Recommended purity class [5:4:4] according to ISO 8573-1:2010

Rules and configuration scheme

Configurable on Cadenas platform

O CADENAS

Note:

When composing the configuration, always bear in mind that the maximum number of electrical signals available is:

- 32 if a 37-pole multi-pin module is used, if a node or IO-Link interface is used.
- 24 if a 25 -pole multi-pin module is used.

If a monostable valve is used on a bistable type base (2 electrical signals occupied), an electrical signal is lost.
However, this makes it possible to replace the monostable valve with a bistable valve in the same position.
Use bases with dedicated closed ports to interrupt ducts 1,3 and 5.
If one or more ports must be interrupted more than once, the addition of the intermediate supply/discharge module is necessary.

Electronic components configurator in technopolymer

Refer to the current limits indicated in the pages relating to the nodes / IO-Link interface

Modules configurator:

1) Complete module configurator

Solenoid valve for progressive start										
EP	M8 M12	Proximity M8x1 Proximity M12x1	01 02 08	$\begin{aligned} & \hline 12 \text { V DC } \\ & 24 \text { V DC } \\ & 24 \text { V DC 1W } \\ & \hline \end{aligned}$	W	5-1-3 closed	4	14 closed	M	Standard Machinery directive

Configuration example of single module:

Signal pass-through base, ports 5-1-3 open, ports 14-12 open with monitored S.V. internal supply, M12 connector, 24 V DC is identified as:

Configuration example of complete group:

- Technopolymer PX3 serial system (P-C3-2M8-D12)
- Left endplate with interface (TS30P)
- Bistable base with S.V. 5/3 CC Sol-Sol (BB.EE12)
- Bistable base with S.V. 2X3/2 NC-NC (BB.FE12)
- Bistable base with S.V. 5/2 Sol-Sol (BB.CE12)
- Bistable base with S.V. 2X3/2 NC-NC (BB.FE12)
- $\mathrm{N}^{\circ} 2$ bistable bases with S.V. 5/2 Sol-Sol (2BB.CE12)
- Right endplate with open ports 1-3-5 (TD00)

V27-P-C3-2M8-D12-TS30P-BB.EE12-BB.FE12-BB.CE12-BB.FE12-2BB.CE12-TD00

Solenoid valve description

DIN rail mounting support plate

Attention: This must be included when creating the manifold configuration. Exclude the offset compensation plate.

From the top

NOILกgIપ્d_SIO Yit

Attention: The overall dimensions shown refer to the modular (valve) sub-bases, and may differ when manifold accessories are included.

DIN rail fixing

Supply ports and maximum possible size according to valves used

Attention: The overall dimensions shown refer to the modular (valve) sub-bases, and may differ when manifold accessories are included.

Manual override actuation

Instable function:

Push to actuate
(when released it moves back to the original position)

Offset compensation plate

Attention: This accessory is supplied on the manifold unless otherwise stated. This is not compatible for DIN rail mounting.

Sub-base assembly

Note: Torque moment 4 Nm
Attention: Ensure the washer is mounted on the screw before tightening

1. Assemble the desired modules and tighten the fixing screws as shown in the figure below.

2. Complete the assembly with the 3100.KT. 00 left endplate kit.

3. To lock: rotate anticlockwise (in the direction of the LOCK print on the case). To unlock: rotate clockwise (in the direction of the UNLOCK print on the case). The same procedure shall be used to add or remove any module.

Modules assembled for vertical configuration

Modules for vertical configuration are as follows:

- Single external supply module
- Flow regulator module
- Shut-off and exhaust module
- Pressure regulator

Attention: The flow rate of the solenoid valve will be reduced compared to that shown in the general catalogue

Solenoid-Spring 5/2

Technical characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous Recommended purity class [5:4:4] according to ISO 8573-1:2010
Working pressure (bar)	From vacuum to 10 (external feeding version) $2 \ldots 10$ (selffeeding version)
Minimum pilot pressure (bar)	2
Temperature ${ }^{\circ} \mathrm{C}$	$-10 \ldots+50$
Flow rate at 6 bar with $\Delta \mathrm{p}=1(\mathrm{NI} / \mathrm{min})$	1000
Responce time according to SO 12238, activation time (ms)	20
Responce time according to SO 12238 , deactivation time (ms)	38

Responce time according to ISO 12238, deactivation time (ms)

Coding: 27APT
PILOTING
(P) A = Selffeeding E $=$ External feeding
VOLTAGE
(1) $12=24 \mathrm{VDC}$
$18=24 \mathrm{VDC} 1 \mathrm{~W}$
Weight 309 g

The "Activations time" values, are valid only for the 24 VDC $2,3 W$ versions

Solenoid-Differential 5/2

Technical characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous Recommended purity class [5:4:4] according to ISO 8573-1:2010
Working pressure (bar)	From vacuum to 10 (external feeding version) $2 \ldots .10$ (self feeding version)
Minimum pilot pressure (bar)	2
Temperature ${ }^{\circ} \mathrm{C}$	$-10 \ldots+50$
Flow rate at 6 bar with $\Delta \mathrm{p}=1(\mathrm{NI} / \mathrm{min})$	1000
Responce time according to ISO 12238, activation time (ms)	20
Responce time according to ISO 12238 , deactivationtime (ms)	38

The "Activations time" values, are valid only for the 24 V DC $2,3 \mathrm{~W}$ versions
 10%

Coding: 27BPT

(P) PILOTING
(P) A=Selffeeding $\mathbf{E}=$ External feeding
VOLTAGE
(1) $12=24 \mathrm{VDC}$
$18=24 \mathrm{VDC} 1 \mathrm{~W}$
Weight 274 g

Solenoid-Solenoid 5/2

| Fluid |
| :--- | :--- |
| Working pressure (bar) |
| Minimum pilot pressure (bar) |
| Temperature ${ }^{\circ} \mathrm{C}$ |
| Flow rate at 6 bar with $\triangle \mathrm{p}=1$ ($\mathrm{N} / / \mathrm{min}$) |
| Responce time according to ISO 12238, activation time (m) |
| Responce time according to ISO 12238 , deactivation time |

The "Activations time" values, are valid only for the 24 V DC $2,3 \mathrm{~W}$ versions

Technical characteristics

Coding: 27CPT

Weight 309 g

Solenoid-Solenoid 5/3

Technical characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous Recommended purity class [5:4:4] according to ISO 8573-1:2010
Working pressure (bar)	From vacuum to 10 (external feeding version) 3 ... 10 (self feeding version)
Minimum pilot pressure (bar)	3
Temperature ${ }^{\circ} \mathrm{C}$	$-10 \ldots+50$
Flow rate at 6 bar with $\Delta \mathrm{p}=1(\mathrm{Nl} / \mathrm{min})$	660
Responce time according to ISO 12238, activation time (ms)	12
Responce time according to ISO 12238, deactivation time (ms)	60

Coding: 27EPT

PILOTNG

(P) A = Selffeeding $\mathbf{E}=$ External feeding
VOLTAGE
(1) $12=24 \mathrm{VDC}$
$18=24 \mathrm{VDC} 1 \mathrm{~W}$

Weight 309 g

Solenoid-Solenoid $5 / 3$ with auto-retaining function

Technical characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous Recommended purity class [5:4:4] according to ISO 8573-1:2010
Working pressure (bar)	From vacuum to 10 (external feeding version) $3 \ldots . .10$ (self feeding version)
Minimum pilot pressure (bar)	3
Temperature ${ }^{\circ} \mathrm{C}$	$-10 \ldots .50$
Flow rate at 6 bar with $\Delta \mathrm{p}=1(\mathrm{NI} / \mathrm{min})$	700
Responce time according to ISO 12238 , activation time (ms)	15
Responce time according to SO 12238 , deactivation time (ms)	80

Maintains the valve state without an electric or pneumatic signal after the activation of L 14 (self-retention).
Valve state changes by activating L12.
Mechanical spring return.

The "Activations time" values, are valid only for the $24 \mathrm{VDC} 2,3 \mathrm{~W}$ versions

Technical characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous Recommended purity class [5:4:4] according to ISO 8573-1:2010
Working pressure (bar)	From vacuum to 10 (external feeding version) 3,5 ... 10 (self feeding version)
Minimum pilot pressure (bar)	$\geq 2+(0.3 \times$ Inlet pressure)
Temperature ${ }^{\circ} \mathrm{C}$	-10 ... +50
Flow rate at 6 bar with $\Delta \mathrm{p}=1(\mathrm{Nl} / \mathrm{min})$	550
Responce time according to ISO 12238, activation time (ms)	12 (external feeding version)
Responce time according to ISO 12238, deactivation time (ms)	60 (external feeding version) 15 (selffeeding version)

FUNCTION
F = NC-NC (5/3 Open centres)
(F) $\mathbf{G}=$ NO-NO (5/3 Pressured centres) $\mathrm{H}=\mathrm{NC}-\mathrm{NO}$ I = NO-NC
PILOTING
(P) A = Selffeeding

E = External feeding
VOLTAGE
(1) $12=24 \mathrm{VDC}$
$18=24 \mathrm{VDC} 1 \mathrm{~W}$

The "Activations time" values, are valid only for the $24 \mathrm{VDC} 2,3 \mathrm{~W}$ versions Example: If inlet pressure is set at 5 bar then pilot pressure must be at least $\mathrm{Pp}=2+(0,3 * 5)=3,5$ bar

$\underset{14}{+5}$
$\stackrel{\square}{7+} \sim_{T}$

果皖 $71 / 4$

Solenoid-Spring monitored (VS)

Coding: 27VSPOT

Technical characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous Recommended purity class [5:4:4] according to ISO 8573-1:2010
Responce time according to ISO 12238, deactivation time (ms)	70
Responce time according to ISO 12238, activation time (ms)	15
Flow rate from 1 to 2 at 6 bar with $\Delta \mathrm{p}=1(\mathrm{Nl} / \mathrm{min})$	1000
Flow rate from 1 to 4 at 6 bar with $\Delta p=1(\mathrm{Nl} / \mathrm{min})$	1000
Flow rate from 2 to 3 at 6 bar with $\Delta p=1(\mathrm{Nl} / \mathrm{min})$	1000
Flow rate from 4 to 5 at 6 bar with $\Delta \mathrm{p}=1$ ($\mathrm{Nl} / \mathrm{min}$)	1000
Flow rate from 2 to 3 at 6 bar with free exhaust (NI/min)	1700
Flow rate from 4 to 5 at 6 bar with free exhaust ($\mathrm{Nl} / \mathrm{min}$)	1700
Temperature ${ }^{\circ} \mathrm{C}$	-10... +50
Working pressure (bar)	From vacuum to 10 (external feeding version) 2 ... 10 (selffeeding version)
Minimum pilot pressure (bar)	2
Function	5/2 N.C. Monostable
Noise level (dB)	75

	Plotime
-	${ }^{\text {a }}$ Sestitesing
-	${ }^{\text {Sensor }}$
	OLTEGE
-	

-Monostable with mechanical spring return and proximity sensor
-Safety component according to annex V of 2006/42/EC directive
-Diagnostic system that monitors the state of the valve:
Sensor ON: Valve at rest
Sensor OFF: Valve activated

The "Activations time" values, are valid only for the 24 V DC 2,3W versions
Note: Overall noise level depends on the final application of the device
Note: The noise level indicated on the table is obtained without using silencers

Pin $1=$ Brown - Pin $4=$ Black - Pin 3 $=$ Blue

Electrical characteristics: Electropilot	Electrical characteristics: Proximity sensor		
Electropilot Series 300 Size 15 mm	Type	Single channel	Single channel
Electrical connection ${ }^{\text {a }}$ Earth Faston/ Series 300 connectors	Thread	M8X1	M12X1
Solenoid coils features 24VDC2.3 W	Electrical design	PNP	PNP
S $24 \mathrm{VDC1W}$	Output function	N.O.	N.O.
Supply voltage tolerance	Operating voltage	10...30 VDC	10...30 VDC
Manual override Integrated	Current consumption (mA)	<20	<20
Protection degree \quad IP65 (with mounted connector)	Isolating class	III	III
Note: Refer to the Pneumax general catalogue for detailed information regarding the electropilot	Display	Switching status $4 \times 90^{\circ}$ Yellow LEDs	Switching status $4 \times 90^{\circ}$ Yellow LEDs
	Protection degree	IP65 (with mounted connector)	IP65 (with mounted connector)

Note: Manufacturer and model of proximity sensors could be changed at the discretion of Pneumax S.p.A.

Note B10d:

General Procedures for assessing pneumatic component reliability by testing performed in accordance with ISO 19973-1, Pneumatic fluid power - Assessment of component reliability by testing - Part 1: General Procedures.
Reliability and lifetime of pneumatic valves assessed in accordance with ISO 19973-2: Pneumatic fluid power -Assessment of component reliability by testing - Part 2: Directional control valves.

Activities regarding the identification of the safety function, the estimation of the required reliability level (e.g. estimation of the PLr according to EN ISO 13849-1), the design and the production of the related safety circuit, its verification and validation are responsibilities of the operator who uses the device in its final application.
The choice of the category and the satisfaction of its requirements according to EN ISO 13849-1 is in charge of the end-user who integrates the device in its final application while considering the final configuration of the safety circuit.
The diagnostic coverage value guaranteed by the sensor must be calculated by the end-user in function of the final configuration of the safety circuit (e.g. in function of the PLC for safety design which controls the solenoid valve and acquires the state of the sensor).
The estimation of the diagnostic coverage must satisfy the requirements of EN ISO 13849-1.
According to EN ISO 13849-1, T10D value must be calculated by the enduser in function of the annual operation number in which the device will be subjected to; in any case, the device must be substituted every 20 years.

Solenoid-Spring monitored redundant (V2S)

Coding: 27V2SPST

Technical characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous Recommended purity class [5:4:4] according to ISO 8573-1:2010
Responce time according to ISO 12238, deactivation time (ms)	70
Responce time according to ISO 12238, activation time (ms)	25
Flow rate from 1 to 2 at 6 bar with $\Delta p=1(\mathrm{Nl} / \mathrm{min})$	1000
Flow rate from 1 to 4 at 6 bar with $\Delta p=1(\mathrm{Nl} / \mathrm{min})$	500
Flow rate from 2 to 3 at 6 bar with $\Delta p=1(\mathrm{Nl} / \mathrm{min})$	500
Flow rate from 4 to 5 at 6 bar with $\Delta p=1(\mathrm{Nl} / \mathrm{min})$	1000
Flow rate from 2 to 3 at 6 bar with free exhaust ($\mathrm{Nl} / \mathrm{min}$)	900
Flow rate from 4 to 5 at 6 bar with free exhaust ($\mathrm{Nl} / \mathrm{min}$)	1700
Temperature ${ }^{\circ} \mathrm{C}$	-10 ... +50
Working pressure (bar)	From vacuum to 10 (external feeding version) 2 ... 10 (self feeding version)
Minimum pilot pressure (bar)	2
Function	5/2 N.C. Monostable
Noise level (dB)	75

Noise level (dB)
75
-Double monostable with mechanical spring return and proximity sensor
-Double redundant channel which guarantees that a pneumatic circuit is safely exhausted in case of failure of one of the valves
-Safety component according to annex V of 2006/42/EC directive
-Diagnostic system that monitors the state of the valve:
Sensor ON: Valve at rest
Sensor OFF: Valve activated

Pin $1=$ Brown - Pin $4=$ Black - Pin 3 $=$ Blue

Electrical characteristics: Electropilot	
Electropilot	Series 300 Size 15 mm
Electrical connection	Earth Faston / Series 300 connectors
Solenoid coils features	24 VDC 2.3 W
24 VDC 1 W	

Note: Refer to the Pneumax general catalogue for detailed information regarding the electropilot

Safety characteristics		
Standards compliancies	EN ISO 13849-1:2015	
	ENISO 13849-2:2012	
Performed Safety Function	Interruption of supply and discharge of a pneumatic circuit connected to port 4	
Sensor feedback	Valve at REST	ON
	Valve ACTIVATED	OFF
MTTFd Sensor	Single Channel M8	1088 years
	Single Channel M12	932 years
Performance Level (PL)	Up to PL=e	
Category	Up to 4	
B10d	630.000 cicli (referred to a single valve)	

Note B10d:

General Procedures for assessing pneumatic component reliability by testing performed in accordance with ISO 19973-1, Pneumatic fluid power - Assessment of component reliability by testing - Part 1: General Procedures.
Reliability and lifetime of pneumatic valves assessed in accordance with ISO 19973-2: Pneumatic fluid power -Assessment of component reliability by testing - Part 2: Directional control valves.

Activities regarding the identification of the safety function, the estimation of the required reliability level (e.g. estimation of the PLr according to EN ISO 13849-1), the design and the production of the related safety circuit, its verification and validation are responsibilities of the operator who uses the device in its final application.
The choice of the category and the satisfaction of its requirements according to EN ISO 13849-1 is in charge of the end-user who integrates the device in its final application while considering the final configuration of the safety circuit.
The diagnostic coverage value guaranteed by the sensor must be calculated by the end-user in function of the final configuration of the safety circuit (e.g. in function of the PLC for safety design which controls the solenoid valve and acquires the state of the sensor).
The estimation of the diagnostic coverage must satisfy the requirements of EN ISO 13849-1.
According to EN ISO 13849-1, T10D value must be calculated by the enduser in function of the annual operation number in which the device will be subjected to; in any case, the device must be substituted every 20 years.

Solenoid-Spring monitored for pilot control 14 (P)

Technical characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous Recommended purity class [5:4:4] according to ISO 8573-1:2010
Responce time according to ISO 12238 , deactivation time (ms)	70
Responce time according to ISO 12238 , activation time (ms)	15
Flow rate from 1 to $2(14)$ at 6 bar with $\Delta \mathrm{p}=1(\mathrm{NI} / \mathrm{min})$	250
Flow rate from 2(14) to 3(5) at 6 bar with $\Delta \mathrm{p}=1(\mathrm{NI} / \mathrm{min})$	250
Flow rate from 2(14) to $3(5)$ at 6 bar with free exhaust $(\mathrm{NI} / \mathrm{min})$	500
Temperature ${ }^{\circ} \mathrm{C}$	$2 \ldots 10$ (external feeding version)
Working pressure (bar)	$2 \ldots 10$ (self feeding version)

Coding: 27P®ST

\boldsymbol{P}	PILOTING
	A = Selffeeding
	E = External feeding
\boldsymbol{S}	SENSOR
	M8 $=$ M8x1 Proximity Sensor
	M12 $=$ M12x1 Proximity Sensor
\boldsymbol{T}	VOLTAGE
	$\mathbf{0 2}=24$ V DC
	$\mathbf{0 8}=24 \mathrm{VDC} 1 \mathrm{~W}$

Weight 615 g
-Monostable with mechanical spring return and proximity sensor
-Control of downstream pressure in pilot channel 14
-Safety component according to annex V of 2006/42/EC directive
-Diagnostic system that monitors the state of the valve:
Sensor ON: Valve at rest
Sensor OFF: Valve activated

The "Activations time" values, are valid only for the 24 V DC 2,3W versions Note: Overall noise level depends on the final application of the device

Pin $1=$ Brown - Pin $4=$ Black - Pin 3 $=$ Blue

Electrical characteristics: Electropilot	
Electropilot	Series 300 Size 15 mm
Electrical connection	Earth Faston / Series 300 connectors
Solenoid coils features	24 VDC 2.3 W
Supply voltage tolerance	24 VDC 1 W
Manual override Integrated	$-5 \% \ldots 10 \%$
Protection degree	
Note: Refer to the Pneumax general catalogue for detailed information regarding the	

Note: Refer to the Pneumax general catalogue for detailed information regarding the electropilot

Electrical characteristics: Proximity sensor		
Type	Single channel	Single channel
Thread	M8X1	M12X1
Electrical design	PNP	PNP
Output function	N.O.	N.O.
Operating voltage	$10 \ldots 30$ VDC	$10 \ldots 30$ VDC
Current consumption (mA)	<20	<20
Isolating class	III	III
Display	Switching status $4 \times 90^{\circ}$ Yellow LEDs	Switching status 4×90 LED
Protlow		

Note: Manufacturer and model of proximity sensors could be changed at the discretion of Pneumax S.p.A.

Note B10d:

General Procedures for assessing pneumatic
component reliability by testing performed in accordance with ISO 19973-1, Pneumatic fluid power - Assessment of component reliability by testing - Part 1: General Procedures.
Reliability and lifetime of pneumatic valves assessed in accordance with ISO 19973-2: Pneumatic fluid power - Assessment of component reliability by testing - Part 2: Directional control valves.

Activities regarding the identification of the safety function, the estimation of the required reliability level (e.g. estimation of the PLr according to EN ISO 13849-1), the design and the production of the related safety circuit, its verification and validation are responsibilities of the operator who uses the device in its final application.
The choice of the category and the satisfaction of its requirements according to EN ISO 13849-1 is in charge of the end-user who integrates the device in its final application while considering the final configuration of the safety circuit.
The diagnostic coverage value guaranteed by the sensor must be calculated by the end-user in function of the final configuration of the safety circuit (e.g. in function of the PLC for safety design which controls the solenoid valve and acquires the state of the sensor)
The estimation of the diagnostic coverage must satisfy the requirements of EN ISO 13849-1.
According to EN ISO 13849-1, T10D value must be calculated by the enduser in function of the annual operation number in which the device will be subjected to; in any case, the device must be substituted every 20 years.

Solenoid valve for progressive start (EP)

Technical characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous Recommended purity class [5:4:4] according to ISO 8573-1:2010
Responce time according to ISO 12238, deactivation time (ms)	70
Responce time according to ISO 12238, activation time (ms)	15
Flow rate from 1 to 2(1) at 6 bar with $\Delta \mathrm{p}=1(\mathrm{Nl} / \mathrm{min})$	2200
Flow rate from 2(1) to 3 at 6 bar with $\Delta \mathrm{p}=1$ ($\mathrm{Nl} / \mathrm{min}$)	2000
Flow rate from 2(1) to 3 at 6 bar with free exhaust (NI/min)	4000
Temperature ${ }^{\circ} \mathrm{C}$	$-10 \ldots+50$
Preset switchover pressure (bar)	~ 4
Working pressure (bar)	2... 10
Function	5/2 N.C. Monostable
Noise level (dB)	75

Coding: 27EPGTOPV

-Available version as a safety component according to annex V of 2006/42/EC directive
-Pressure zone exhaust ports 3 and 5 available
-Diagnostic system that monitors the state of the valve:
Sensor ON: Valve activated
Sensor OFF: Valve at rest

Electrical characteristics: Electropilot	
Electropilot	Series 300 Size 15 mm
Electrical connection	Earth Faston / Series 300 connectors
Solenoid coils features	24 VDC 2.3 W
Supply voltage tolerance	$-5 \% \mathrm{VDC} 1 \mathrm{~W}$
Manual override Integrated	No (separated from the electropilot)
Protection degree	IP65 (with mounted connector)

Note: Refer to the Pneumax general catalogue for detailed information regarding the electropilot

Electrical characteristics: Proximity sensor		
Type	Single channel	Single channel
Thread	M8X1	M12X1
Electrical design	PNP	PNP
Output function	N.O.	N.O.
Operating voltage	$10 \ldots 30$ VDC	$10 \ldots 30$ VDC
Current consumption (mA)	<20	<20
Isolating class	III	III
Display	Switching status $4 \times 90^{\circ}$ Yellow LEDs	Switching status $4 \times 90^{\circ}$ Yellow LEDs
Protection degree	IP65 (with mounted connector)	IP65 (with mounted connector)

Note: Manufacturer and model of proximity sensors could be changed at the discretion of Pneumax S.p.A.

Note B10d:
General Procedures for assessing pneumatic component reliability by testing performed in accordance with ISO 19973-1, Pneumatic fluid power - Assessment of component reliability by testing - Part 1: General Procedures.
Reliability and lifetime of pneumatic valves assessed in accordance with ISO 19973-2: Pneumatic fluid power -Assessment of component reliability by testing - Part 2: Directional control valves.

Activities regarding the identification of the safety function, the estimation of the required reliability level (e.g. estimation of the PLr according to EN ISO 13849-1), the design and the production of the related safety circuit, its verification and validation are responsibilities of the operator who uses the device in its final application.
The choice of the category and the satisfaction of its requirements according to EN ISO 13849-1 is in charge of the end-user who integrates the device in its final application while considering the final configuration of the safety circuit.
The diagnostic coverage value guaranteed by the sensor must be calculated by the end-user in function of the final configuration of the safety circuit (e.g. in function of the PLC for safety design which controls the solenoid valve and acquires the state of the sensor).
The estimation of the diagnostic coverage must satisfy the requirements of EN ISO 13849-1.
According to EN ISO 13849-1, T10D value must be calculated by the enduser in function of the annual operation number in which the device will be subjected to; in any case, the device must be substituted every 20 years.

Left Endplate
Coding: 27TS30P

Technical characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous Recommended purity class [5:4:4] according to ISO 8573-1:2010
Temperature ${ }^{\circ} \mathrm{C}$	$-10 \ldots+50$
Working pressure (bar)	From vacuum to 10
Pilot pressure port 14 (bar)	$3 \ldots 7$

Right Endplate

Coding: 27TDC
SUPPLY AND EXHAUST PORTS $00=$ Ports 5,1 and 3 open W = Ports 5, 1 and 3 closed $\mathbf{X Y}=$ Ports $1-3$ closed
©
$\mathrm{ZX}=$ Ports $5-1$ closed $\mathbf{Z Y}=$ Ports 5 - 3 closed $\mathbf{X}=$ Port 1 closed $\mathbf{Y}=$ Port 3 closed $\mathbf{z}=$ Port 5 closed

Weight 560 g

Modular base

	Technical characteristics
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous Recommended purity class $[5: 444$ according to ISO $8573-1: 2010$
Temperature ${ }^{\circ} \mathrm{C}$	$-10 \ldots+50$
Working pressure (bar)	$3 \ldots 10$

Coding: 27BVCP

(V)	VERSION
	M = Monostable
	B = Bistable
	$\mathbf{P}=$ Pass-through signal
C	SUPPLY AND EXHAUST PORTS
	= Ports 5, 1 and 3 open
	W = Ports 5, 1 and 3 closed
	$\mathbf{X Y}=$ Ports 1-3 closed
	$\mathbf{Z X}=$ Ports 5-1 closed
	ZY = Ports 5-3 closed
	$\mathbf{X}=$ Port 1 closed
	$\mathbf{Y}=$ Port 3 closed
	\mathbf{Z} = Port 5 closed
(P)	PILOT PORTS
	= Ports 14-12 open
	4 = Port 14 closed
	2 = Port 12 closed

2 = Port 12 closed
(2) $\mathrm{G} 1 / 4$ "
(4) ${ }^{\mathrm{G} 1 / 4}$

Weight 298 g

Intermediate Inlet/Exhaust module

Technical characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous Recommended purity class [5:4:4] according to ISO 8573-1:2010
Temperature ${ }^{\circ} \mathrm{C}$	$-10 \ldots+50$
Working pressure (bar)	From vacuum to 10

Free valve space plug

Coding: 27WVCP

V	VERSION
	U = Conveyed exhausts
	S = Separated exhausts
0	SUPPLY AND EXHAUST PORTS
	= Ports 5, 1 and 3 open
	W = Ports 5, 1 and 3 closed
	XY $=$ Ports 1-3 closed
	ZX = Ports 5-1 closed
	ZY = Ports 5-3 closed
	$\mathbf{X}=$ Port 1 closed
	$\mathbf{Y}=$ Port 3 closed
	\mathbf{Z} = Port 5 closed
P	PILOTPORTS
	= Ports 14-12 open
	4 = Port 14 closed
	2 = Port 12 closed

Technical characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous Recommended purity class [5:4:4] according to ISO 8573-1:2010
Temperature ${ }^{\circ} \mathrm{C}$	$-10 \ldots+50$
Working pressure (bar)	From vacuum to 10
Pilot pressure port 14 (bar)	$3 \ldots 7$

Weight 70 g

Single external power supply module

Technical characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous Recommended purity class [5:4:4] according to ISO 8573-1:2010
Temperature ${ }^{\circ} \mathrm{C}$	$-10 \ldots+50$
Working pressure (bar)	$2 \ldots 10$ (version 14)

Coding: 27ASV

-Suitable module for vertical configuration -It allows to externally supply a single valve with pressure different from the manifold.

Flow regulator module

-Suitable module for vertical configuration
-It allows the flow regulation of ports 3 and 5
-Regualtion through two needles independent of each other -It is designed to control the speed of an actuator

Coding: 27RFV
\qquad
$35=$ Exhaust flow regulator

Shut-off and exhaust module

Weight 504 g
27VLV

Weight 550 g

$$
27 \mathrm{VLOK}
$$

[^2]Pressure regulator (compact version)

Technical characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous Recommended purity class [5:4:4] according to ISO 8573-1:2010
Temperature ${ }^{\circ} \mathrm{C}$	$-10 \ldots+50$
Working pressure (bar)	$0,5 \ldots 10$

R	REGULATION TYPE
	D = Downstream
	U = Upstream
(L)	REGULATION SIDE
	2 = Single L12
	4 = Single L14
	24 = Double L12-L14
(G)	REGULATION RANGE
	A $=0-2 \mathrm{bar}$
	B $=0-4$ bar
	C $=0-8 \mathrm{bar}$
O	RELIEVING OPTIONS
	A = With reliving
C	KNOB COLOUR
	V = Green (RAL6032)
	G = Grey (RAL 7004)

-Suitable module for vertical configuration
It allows the regulation of output pressure to actuators
-Actuator pressure regulation:
-with regulator upstream of the solenoid valve (faster exhaust phase of the actuator)

- with regulator downstream of the solenoid valve
-Possible installation of pressure regulators in succession (available on request)
Pressure gauges adjustable in 3 positions

Note:

Pressure must be set upwards.
For greater accuracy and sensitivity, it is recommended using a regulator with a pressure rating as close as possible to the desired pressure.

Pressure regulator (extended version)

Weight 760 g

27RPRDGOOM

Coding: 27RPBDGOOV

R	REGULATION TYPE
	D = Downstream
	U = Upstream
(L)	REGULATION SIDE
	2 = Single L12
	4 = Single L14
	24 = Double L12-L14
G	REGULATION RANGE
	A $=0-2 \mathrm{bar}$
	B $=0.4 \mathrm{bar}$
	C $=0-8 \mathrm{bar}$
0	RELIEVING OPTIONS
	A = With reliving
C	KNOB COLOUR
	V = Green (RAL 6032)
	G = Grey (RAL 7004)
V	VERSION
	= Adjustable pressure gauge
	\mathbf{M} = Fixed pressure gauge

-Suitable module for vertical configuration
-It allows the regulation of output pressure to actuators
-Actuator pressure regulation:
-with regulator upstream of the solenoid valve (faster exhaust phase of the actuator)
-with regulator downstream of the solenoid valve
-Possible installation of pressure regulators in succession (available on request)
-Pressure gauges adjustable in 3 positions or fixed

M = Fixed pressure gauge
\qquad

Note:
Pressure must be set upwards.
For greater accuracy and sensitivity, it is recommended using a regulator with a pressure rating as close as possible to the desired pressure.

DIN rail adapter

EVO Electronics

A UNIQUE CONTROL SYSTEM, A WIDE RANGE OF SOLUTIONS

The PX Series multiserial module can be integrated into all Optyma S-F-T and 2700 series solenoid valves manifolds in EVO versions. The solenoid valves manifolds can be configured by implementing all major communication protocols on the same electronics, ensuring maximum flexibility and reliability in any application context.

MULTI-PIN MODULE				
	Optyma-S	Optyma-F	Optyma-T	Series 2700
25 poles	-	-	-	-
37 poles	-	-	-	-
44 poles	-			
SERIAL SYSTEMS				
	Optyma-S	Optyma-F	Optyma-T	Series 2700
CANopen ${ }^{\text {® }} 32$ bit protocol node kit	-	-	-	-
CANopen ${ }^{\text {® }} 48$ bit protocol node kit	-			
PROFIBUS DP 32 bit protocol node kit	-	-	-	-
PROFIBUS DP 48 bit protocol node kit	-			
EtherNet/IP protocol node kit	-	-	-	-
EtherCAT ${ }^{\text {® }}$ protocol node kit	-	-	-	-
PROFINETIO RT protocol node kit	-	-	-	-
CC-Link IE Field Basic protocol node kit	-	-	-	-
IO-Link 32 bit protocol interface kit	-	-	-	-
IO-Link 48 bit protocol interface kit	-			
INPUTS AND OUTPUTS MODULES				
	Optyma-S	Optyma-F	Optyma-T	Series 2700
8 M8 \& M12 digital inputs module kits	-	-	-	-
8 M8 \& M12 digital outputs module kits	-	-	-	-
32 digital inputs \& outputs module kits (37 pin SUB-D connector)	-	-	-	-
Analogue inputs module kit M8	-	-	-	-
Analogue outputs module kit M8	-	-	-	-
Pt100 inputs module kit	-	-	-	-
ADDITIONAL MODULES				
	Optyma-S	Optyma-F	Optyma-T	Series 2700
Additional power supply module kit	-	-	-	-

Ethercat. ${ }^{\sim}$ Etheri'et/IP © IO-Link

CC-Línk IE Field Basic

Multi-pin module

Technical characteristics		
Maximum current per module		
Protection	Overcurrent (auto-resettable fuse) Reverse polarity	
	300 mA	
Maximum cable length	$<30 \mathrm{~m}$	
Input data allocation	8 bit	
INPUTS +24 VDC current consumption of the module only	5 mA	
Maximum number of handled signals	25 Poles	24
	37 poles	32
	44 Poles	40

Coding: 5E30.C

ELECTRICALCONNECTION	
$\mathbf{2 5 P}=$ Connector 25 poles PNP	
$\mathbf{3 7 P}=$ Connector 37 poles PNP	
$\mathbf{4 4 P}=$ Connector 44 poles PNP	
$\mathbf{2 5 N}=$ Connector 25 poles NPN	
	$\mathbf{3 7 N}=$ Connector 37 poles NPN
$\mathbf{4 4 N}=$ Connector 44 poles NPN	
$\mathbf{2 5 A}=$ Connector 25 poles AC	
$\mathbf{3 7 A}=$ Connector 37 poles AC	
$\mathbf{4 4 A}=$ Connector 44 poles PNP	

Scheme / Overall dimensions and I/O layout

CANopen ${ }^{\text {® }}$ protocol node kit

CANopen ${ }^{\oplus}$ node manages 64 inputs and outputs.
Accessory modules can be connected in whatever order and configuration.
Connection to CANopen ${ }^{\circledR}$ fieldbus is made via two M12, male and female, 5 pins, type A circular connectors, in parallel between them; connectors pinout is compliant to CiA Draft recommendation 303-1 (V. 1.3:30 December 2004).
Transmission speed and address, as well as termination resistor activation are set via DIP-switches.
CANopen ${ }^{\circledR}$ node is available in two versions with 32 or 48 outputs allocated to solenoid valves on the manifold directly connected to the node.
Such outputs correspond to least significant bytes and their allocation is independent of how many solenoid valves are installed.
Remaining outputs can be used to control the modules
Byte allocation to additional modules is fully automatic.

Current limitations

Both stand alone and integrated components must operate within the current limits of the fieldbus node; please note: the solenoid valves are supplied by OUTPUTS + 24 V DC (pin 4).
To compute the maximum current on the OUTPUTS +24 VDC , please use the following formula:

$$
I_{24 V D C \text { out }}=\sum_{i=1}^{n} I_{\text {out }, i}+m i_{E V} \quad \begin{aligned}
& n=\text { number of installed modules } \\
& I_{\text {out }, i}=\text { maximum total current absorbed by the i-th module on the OUTPUTS }+24 \mathrm{~V} \\
& m=\text { number of installed solenoid pilots }
\end{aligned}
$$

$i_{E V}=$ mean absorbed current per solenoid pilot (please see table below)

Series	i_EV
2200 "Optyma S"	36 mA
2500 "OptymaF"	54 mA
2500 "Optyma T"	54 mA
Series 2700	$24 \mathrm{~mA}(1 \mathrm{~W}$ version $) / 100 \mathrm{~mA}(2,3 \mathrm{~W}$ version $)$

For each fieldbus node, maximum deliverable current by OUTPUTS + 24 VDC supply is 4 A , moreover the sum of the currents on OUTPUTS +24 VDC and INPUTS +24 VDC must not exceed 4 A .
$I_{24 V D C \text { out }}+I_{24 V D C \text { in }}<4 A$
Where:
$I_{24 V D C \text { in }}=\sum_{i=1}^{n} I_{i n, i}$
$n=$ number of installed modules
$I_{\text {in,i }}=$ maximum total current absorbed by the i-th module on the INPUTS +24 V DC supply rail (please see specifications of the single module)

Coding: K5530.64.VCO

(V) \begin{tabular}{l|l|}
\hline VERSION

\hline | $32=32$ output bits available for valve |
| :--- |
| connections |

\hline | $48=48$ output bits available for valve |
| :--- |
| connections |

\hline
\end{tabular}

In case total current is more than 4A, it is mandatory to supply modules exceeding current limit with power supply module K5030.M12.

Scheme / Overall dimensions and I/O layout

Technical characteristics		
Specifications		CiA Draft Standard Proposal 301 V 4.10 (15 August 2006)
Case		Reinforced technopolymer
Power supply	Voltage	$+24 \mathrm{VDC} \pm 10 \%$
	Node only current consumption on + 24 V DC inputs	40 mA
	Power supply diagnosis	Green LED PWR NODE / Green LED PWR OUT
Communication	Connection	2 M12 5 pins male-female connectors type A (IEC 60947-5-2)
	Baud rate	10-20-50-125-250-500-800-1000 Kbit/s
	Addresses possible numbers	From 1 to 63
	Maximum nodes number in network	64 (slave + master)
	Bus maximum recommended length	$100 \mathrm{mat} 500 \mathrm{Kbit} / \mathrm{s}$
	Bus diagnosis	Green/red status LED
Configuration file		Available from our web site http://www.pneumaxspa.com
Protection degree		IP65 when assembled
Temperature ${ }^{\circ} \mathrm{C}$		$-5 \ldots+50$

PROFIBUS DP protocol node kit

PROFIBUS DP node manages 64 inputs and outputs.
Accessory modules can be connected in whatever order and configuration.
Connection to PROFIBUS DP fieldbus is made via two M12, male and female, 5 pins, type B circular connectors, in parallel between them; connectors pinout is PROFIBUS Interconnection Technology specifications compliant (Version 1.1, August 2001).
Address as well as termination resistor activation are set via DIP-switches.
PROFIBUS DP node is available in two versions with 32 or 48 outputs allocated to solenoid valves on the manifold directly connected to the node.
Such outputs correspond to least significant bytes and their allocation is independent of how many solenoid valves are installed. Remaining outputs can be used to control the modules.
Byte allocation to additional modules is fully automatic.

Current limitations

Both stand alone and integrated components must operate within the current limits of the fieldbus node; please note: the solenoid valves are supplied by OUTPUTS +24 VDC (pin 4).
To compute the maximum current on the OUTPUTS +24 VDC , please use the following formula:

$$
n=\text { number of installed modules }
$$

$I_{\text {out }, i}=$ maximum total current absorbed by the i-th module on the OUTPUTS +24 V
$I_{24 V D C \text { out }}=\sum_{i=1}^{n} I_{\text {out }, i}+m i_{E V}$
DC supply rail (please see specifications of the single module)
$m=$ number of installed solenoid pilots
$i_{E V}=$ mean absorbed current per solenoid pilot (please see table below)

Series	i_EV
2200 "Optyma S"	36 mA
2500 "Optyma F"	54 mA
2500 "Optyma T"	54 mA
Series 2700	$24 \mathrm{~mA}(1 \mathrm{~W}$ version $) / 100 \mathrm{~mA}(2,3 \mathrm{~W}$ version)

For each fieldbus node, maximum deliverable current by OUTPUTS + 24 V DC supply is 4 A , moreover the sum of the currents on OUTPUTS +24 VDC and INPUTS +24 VDC must not exceed 4 A .
$I_{24 V D C \text { out }}+I_{24 V D C \text { in }}<4 A$
Where:
$I_{24 V D C}=\sum_{i=1}^{n} I_{i n, i} \quad \begin{aligned} & n=\text { number of installed modules } \\ & I_{i n, i}=\text { maximum total current absorbed by the i-th module on the INPUTS }+24 \mathrm{VDC} \\ & \text { supply rail (please see specifications of the single module) }\end{aligned}$

Coding: K5330.64.VPB

(V)	VERSION $32=32$ output bits available for valve connections

In case total current is more than 4A, it is mandatory to supply modules exceeding current limit with power supply module K5030.M12.

Scheme / Overall dimensions and I/O layout

PIN	SIGNAL	DESCRIPTION
$\mathbf{1}$	VP	Optional Power supply plus, (P5V)
$\mathbf{2}$	A-line	Receive / Transmit data -N, A-line
$\mathbf{3}$	DGND	Data Ground (reference potential to VP)
$\mathbf{4}$	B-line	Receive / Transmit data -P, B-line
$\mathbf{5}$	SHIELD	Shield or PE

Technical characteristics		
Specifications		PROFIBUS DP
Case		Reinforced technopolymer
Power supply	Voltage	$+24 \mathrm{VDC} \pm 10 \%$
	Node only current consumption on + 24 V DC inputs	70 mA
	Power supply diagnosis	Green LED PWR NODE / Green LED PWR OUT
Communication	Connection	2 M125 pins male-female connectors type B
	Baud rate	9,6-19,2-93,75-187,5-500-1500-3000-6000-12000 Kbit/s
	Addresses possible numbers	From 1 to 99
	Maximum nodes number in network	100 (slave + master)
	Bus maximum recommended length	100 m at $12 \mathrm{Mbit} / \mathrm{s}-1200 \mathrm{mat} 9,6 \mathrm{Kbit} / \mathrm{s}$
	Bus diagnosis	Green/red status LED
Configuration file		Available from our web site http://www.pneumaxspa.com
Protection degree		IP65 when assembled
Temperature ${ }^{\circ} \mathrm{C}$		$-5 \ldots+50$

EtherNet/IP protocol node kit

EtherNet/IP node manages 128 inputs and outputs.
Accessory modules can be connected in whatever order and configuration.
Coding: K5730.128.48EI
Network connection is made via 2 M12 female, type D, 4 pins, circular connectors.
Code K5730.128.48El provides first 48 outputs, corresponding to least significant 6 bytes, are allocated to the solenoid valve positions, regardless how many they are and how many valves are installed on the manifold directly connected to the node. Remaining 80 outputs can be used to manage output modules; bytes allocation to additional modules is fully automatic.

Current limitations

Both stand alone and integrated components must operate within the current limits of the fieldbus node; please note: the solenoid valves are supplied by OUTPUTS + 24 V DC (pin 4).
To compute the maximum current on the OUTPUTS +24 VDC , please use the following formula:

$$
I_{24 V D C \text { out }}=\sum_{i=1}^{n} I_{\text {out }, i}+m i_{E V} \quad \begin{aligned}
& n=\text { number of installed modules } \\
& I_{\text {out }, i}=\text { maximum total current absorbed by the } \mathrm{i} \text {-th module on the OUTP } \begin{array}{l}
\text { DC rail (please see specifications of the }+24 \mathrm{~V} \\
\\
m=\text { number of installed solenoid pilots }
\end{array}
\end{aligned}
$$

$i_{E V}=$ mean absorbed current per solenoid pilot (please see table below)

Series	i_EV
2200 "Optyma S"	36 mA
2500 "OptymaF"	54 mA
2500 "Optyma T"	54 mA
Series 2700	$24 \mathrm{~mA}(1 \mathrm{~W}$ version $) / 100 \mathrm{~mA}(2,3 \mathrm{~W}$ version $)$

For each fieldbus node, maximum deliverable current by OUTPUTS + 24 VDC supply is 4 A , moreover the sum of the currents on OUTPUTS +24 V DC and INPUTS +24 V DC must not exceed 4 A .
$I_{24 V D C}$ out $+I_{24 V D C}$ in $<4 \mathrm{~A}$
Where:

$$
I_{24 \mathrm{VDC} \text { in }}=\sum_{i=1}^{n} I_{\text {in,i }} \quad \begin{aligned}
& n=\text { number of installed modules } \\
& I_{\text {in,i }}=\text { maximum total current absorbed by the i-th module on the INPUTS }+24 \mathrm{VDC} \\
& \text { supply rail (please see specifications of the single module) }
\end{aligned}
$$

Scheme / Overall dimensions and I/O layout

Technical characteristics		
Case		Reinforced technopolymer
Power supply	Voltage	$+24 \mathrm{VDC} \pm 10 \%$
	Node only current consumption on + 24 V DC inputs	65 mA
	Power supply diagnosis	Green LED PWR NODE / Green LED PWR OUT
Communication	Connection	2 M12 4 pins male-female connectors type D (IEC 61076-2-101)
	Baud rate	$100 \mathrm{Mbit} / \mathrm{s}$
	Maximum distance between 2 nodes	100 m
	Bus diagnosis	Green/red status LED
Configuration file		Available from our web site http://www.pneumaxspa.com
Protection degree		IP65 when assembled
Temperature ${ }^{\circ} \mathrm{C}$		$-5 \ldots+50$

EtherCAT ${ }^{\circledR}$ protocol node kit

EtherCAT ${ }^{\star}$ node manages 128 inputs and outputs.
Accessory modules can be connected in whatever order and configuration.
Network connection is made via 2 M12 female, type D, 4 pins, circular connectors.
Code K5730.128.48EC provides first 48 outputs, corresponding to least significant 6 bytes, are allocated to the solenoid valve positions, regardless how many they are and how many valves are installed on the manifold directly connected to the node. Remaining 80 outputs can be used to manage output modules; bytes allocation to additional modules is fully automatic.

Current limitations

Both stand alone and integrated components must operate within the current limits of the fieldbus node; please note: the solenoid valves are supplied by OUTPUTS + 24 VDC (pin 4).
To compute the maximum current on the OUTPUTS +24 VDC , please use the following formula:

$$
n=\text { number of installed modules }
$$

$I_{\text {out }, i}=$ maximum total current absorbed by the i-th module on the OUTPUTS +24 V
DC supply rail (please see specifications of the single module)
$m=$ number of installed solenoid pilots
$i_{E V}=$ mean absorbed current per solenoid pilot (please see table below)

Series	i_EV
2200 "Optyma S"	36 mA
2500 "Optyma F"	54 mA
2500 "Optyma T"	54 mA
Series 2700	$24 \mathrm{~mA}(1 \mathrm{~W}$ version $) / 100 \mathrm{~mA}(2,3 \mathrm{~W}$ version)

For each fieldbus node, maximum deliverable current by OUTPUTS + 24 VDC supply is 4 A, moreover the sum of the currents on OUTPUTS +24 VDC and INPUTS +24 VDC must not exceed 4 A .
$I_{24 V D C \text { out }}+I_{24 V D C \text { in }}<4 A$
Where:
$I_{24 V D C}=\sum_{i=1}^{n} I_{i n, i} \quad \begin{aligned} & n=\text { number of installed modules } \\ & I_{i n, i}=\text { maximum total current absorbed by the i-th module on the INPUTS }+24 \mathrm{VDC} \\ & \text { supply rail (please see specifications of the single module) }\end{aligned}$

Coding: K5730.128.48EC

In case total current is more than 4A, it is mandatory to supply modules exceeding current limit with power supply module K5030.M12.

Scheme / Overall dimensions and I/O layout

Technical characteristics		
Case		Reinforced technopolymer
Power supply	Voltage	$+24 \mathrm{VDC} \pm 10 \%$
	Node only current consumption on +24V DC inputs	65 mA
	Power supply diagnosis	Green LED PWR NODE/ Green LED PWR OUT
Communication	Connection	2 M 124 pins male-female connectors type D (IEC 61076-2-101)
	Baud rate	$100 \mathrm{Mbit} / \mathrm{s}$
	Maximum distance between 2 nodes	100 m
	Bus diagnosis	Green / red status LED
Configuration file		Available from our web site http://www.pneumaxspa.com
Protection degree		IP65 when assembled
Temperature ${ }^{\circ} \mathrm{C}$		$-5 \ldots+50$

PROFINET IO RT protocol node kit

PROFINET IO RT node manages 128 inputs and outputs.
Accessory modules can be connected in whatever order and configuration.
Network connection is made via 2 M12 female, type D, 4 pins, circular connectors.
Code K5730.128.48PN provides first 48 outputs, corresponding to least significant 6 bytes, are allocated to the solenoid valve positions, regardless how many they are and how many valves are installed on the manifold directly connected to the node Remaining 80 outputs can be used to manage output modules; bytes allocation to additional modules is fully automatic.

Current limitations

Both stand alone and integrated components must operate within the current limits of the fieldbus node; please note: the solenoid valves are supplied by OUTPUTS + 24 V DC (pin 4).
To compute the maximum current on the OUTPUTS +24 VDC , please use the following formula:

$$
I_{24 V D C \text { out }}=\sum_{i=1}^{n} I_{\text {out }, i}+m i_{E V} \quad \begin{aligned}
& n=\text { number of installed modules } \\
& I_{\text {out }, i}=\text { maximum total current absorbed by the i-th module on the OUTPUTS rail (please see specifications of the single module) } 24 \mathrm{~V}
\end{aligned}
$$

$m=$ number of installed solenoid pilots
$i_{E V}=$ mean absorbed current per solenoid pilot (please see table below)

Series	i_EV
2200 "Optyma S"	36 mA
2500 "OptymaF"	54 mA
2500 "Optyma T"	54 mA
Series 2700	$24 \mathrm{~mA}(1 \mathrm{~W}$ version $) / 100 \mathrm{~mA}(2,3 \mathrm{~W}$ version $)$

For each fieldbus node, maximum deliverable current by OUTPUTS + 24 VDC supply is 4 A , moreover the sum of the currents on OUTPUTS +24 V DC and INPUTS +24 V DC must not exceed 4 A .
$I_{24 V D C}$ out $+I_{24 V D C}$ in $<4 A$
Where:

$$
I_{24 \mathrm{~V} D C}=\sum_{i=1}^{n} I_{\text {in,i }} \quad \begin{aligned}
& n=\text { number of installed modules } \\
& I_{\text {in }, i}=\text { maximum total current absorbed by the } i-\text { th module on the INPUTS }+24 \mathrm{VDC} \\
& \text { supply rail (please see specifications of the single module) }
\end{aligned}
$$

Coding: K5730.128.48PN

In case total current is more than 4A, it is mandatory to supply modules exceeding current limit with power supply module K5030.M12.

Scheme / Overall dimensions and I/O layout

Technical characteristics		
Case		Reinforced technopolymer
Power supply	Voltage	$+24 \mathrm{VDC} \pm 10 \%$
	Node only current consumption on + 24 V DC inputs	65 mA
	Power supply diagnosis	Green LED PWR NODE / Green LED PWR OUT
Communication	Connection	2 M12 4 pins male-female connectors type D (IEC 61076-2-101)
	Baud rate	$100 \mathrm{Mbit} / \mathrm{s}$
	Maximum distance between 2 nodes	100 m
	Bus diagnosis	Green/red status LED
Configuration file		Available from our web site http://www.pneumaxspa.com
Protection degree		IP65 when assembled
Temperature ${ }^{\circ} \mathrm{C}$		$-5 \ldots+50$

CC-Link IE Field Basic protocol node kit

CC-Link IE Field Basic node manages 128 inputs and outputs.
Accessory modules can be connected in whatever order and configuration.
Network connection is made via 2 M12 female, type D, 4 pins, circular connectors.
Code K5730.128.48CL provides first 48 outputs, corresponding to least significant 6 bytes, are allocated to the solenoid valve positions, regardless how many they are and how many valves are installed on the manifold directly connected to the node. Remaining 80 outputs can be used to manage output modules; bytes allocation to additional modules is fully automatic.

Current limitations

Both stand alone and integrated components must operate within the current limits of the fieldbus node; please note: the solenoid valves are supplied by OUTPUTS + 24 VDC (pin 4).
To compute the maximum current on the OUTPUTS +24 VDC , please use the following formula:

$$
n=\text { number of installed modules }
$$

$I_{\text {out }, i}=$ maximum total current absorbed by the i-th module on the OUTPUTS +24 V
DC supply rail (please see specifications of the single module) $I_{24 V D C \text { out }}=\sum_{i=1}^{n} I_{\text {out }, i}+m i_{E V}$

$$
m=\text { number of installed solenoid pilots }
$$

$i_{E V}=$ mean absorbed current per solenoid pilot (please see table below)

Series	i_EV
2200 "Optyma S"	36 mA
2500 "Optyma F"	54 mA
2500 "Optyma T"	54 mA
Series 2700	$24 \mathrm{~mA}(1 \mathrm{~W}$ version $) / 100 \mathrm{~mA}(2,3 \mathrm{~W}$ version $)$

For each fieldbus node, maximum deliverable current by OUTPUTS +24 VDC supply is 4 A , moreover the sum of the currents on OUTPUTS +24 VDC and INPUTS +24 VDC must not exceed 4 A .
$I_{24 V D C \text { out }}+I_{24 V D C \text { in }}<4 A$
Where:
$I_{24 V D C \text { in }}=\sum_{i=1}^{n} I_{i n, i}$
n = number of installed modules
$I_{\text {in,i }}=$ maximum total current absorbed by the i-th module on the INPUTS +24 V DC supply rail (please see specifications of the single module)

Coding: K5730.128.48CL

In case total current is more than 4A, it is mandatory to supply modules exceeding current limit with power supply module K5030.M12.

Scheme / Overall dimensions and I/O layout

Technical characteristics		
Case		Reinforced technopolymer
Power supply	Voltage	$+24 \mathrm{VDC} \pm 10 \%$
	Node only current consumption on + 24 V DC inputs	65 mA
	Power supply diagnosis	Green LED PWR NODE / Green LED PWR OUT
Communication	Connection	2 M 124 pins male-female connectors type D (IEC 61076-2-101)
	Baud rate	$100 \mathrm{Mbit} / \mathrm{s}$
	Maximum distance between 2 nodes	100 m
	Bus diagnosis	1 Green LED and 1 red status LED + 2 link and activity LEDs'
Configuration file		Available from our web site http://www.pneumaxspa.com
Protection degree		IP65 when assembled
Temperature ${ }^{\circ} \mathrm{C}$		$-5 \ldots+50$

IO-Link protocol interface kit

IO-Link interface manages 64 inputs and outputs.
Accessory modules can be connected in whatever order and configuration.
Electric power supply and IO-Link connection to the Master are made via M12, male, 5 pins, type A, circular connector, "CLASS B", according to IO-Link specifications.
Electric rails L+/L-supply interface only, while P24/N24 rails supply additional modules and solenoid valves.
Either power supplies are galvanically isolated in the IO-Link interfaces.
IO-Link interface is available in two versions with 32 or 48 outputs allocated to solenoid valves on the manifold directly connected to the node.
Such outputs correspond to least significant bytes and their allocation is independent of how many solenoid valves are installed. Remaining outputs can be used to control the modules.
Byte allocation to additional modules is fully automatic.

Current limitations

Both stand alone and integrated components must operate within the current limits of the fieldbus node; please note: the solenoid valves are supplied by pin 2 and pin 5 (P24/N24).
To compute the maximum current on the P24 / N24 supply, please use the following formula::
$n=$ number of installed modules
$I_{\text {out }, i}=$ maximum total current absorbed by the i-th module on the OUTPUTS +24 V
$I_{24 V D C \text { out }}=\sum_{i=1}^{n} I_{\text {out }, i}+m i_{E V}$
$I_{\text {out }, i}$ DC supply rail (please see specifications of the single module)
$I_{i n, i}=$ maximum total current absorbed by the i-th module on the INPUTS + 24 VDC supply rail (please see specifications of the single module)
$m=$ number of installed solenoid pilots
$i_{E V}=$ mean absorbed current per solenoid pilot (please see table below)

Coding: K5830.64.VIK

(V) \begin{tabular}{l|l|}
\hline VERSION

\hline | $32=32$ output bits available for valve |
| :--- |
| connections |

\hline | $48=48$ output bits available for valve |
| :--- |
| connections |

\hline
\end{tabular}

(V) connections $48=48$ output bits available for valve connections

Series	i_EV
2200 "Optyma S"	36 mA
2500 "OptymaF"	54 mA
2500 "Optyma T"	54 mA
Series 2700	$24 \mathrm{~mA}(1 \mathrm{~W}$ version) $/ 100 \mathrm{~mA}(2,3 \mathrm{~W}$ version)

$=$ maximum total current absorbed by the i-th module on the INPUTS +24 VDC supply rail (please see specifications of the single module)
In case total current is more than 4 A , it is mandatory to supply modules exceeding current limit with power supply module K5030.M12.

Scheme / Overall dimensions and I/O layout

Technical characteristics		
Specifications		IO-Link Specification v1.1
Case		Reinforced technopolymer
Power supply	Voltage	+ $24 \mathrm{VDC}+/-10 \%$
	Interface current consumption on + 24 V DC (L+ / L-)	25 mA
	Power supply diagnosis	Green LED PWR NODE / Green LED PWR OUT
Communication	Connection	"Class B" port
	Communication speed	38.4 kbaud/s
	Maximum distance from Master	20 m
	Bus diagnosis	Green/red status LED
	Vendor ID / Device ID	1257 (hex 0x04E9) / 3000 (hex 0x0BB8)
Configurations file IODD		Available from our web site http://www.pneumaxspa.com
Protection degree		IP65 when assembled
Temperature ${ }^{\circ} \mathrm{C}$		$-5 \ldots+50$

Solenoid valves manifold

EVO Electronics - Inputs and outputs modules

8 digital inputs module kit M8

M8 digital inputs module provides $8 \mathrm{M8}$, 3 pins, female connectors.
Inputs have PNP logic, + $24 \mathrm{VDC} \pm 10 \%$.
It is possible to connect 2 wires devices (e.g. switches, magnetic limit switches, pressure switches, etc.) as well as 3 wires devices (e.g. proximity sensors, photocells, electronic magnetic limit switches, etc.).

Inputs module power supply is provided by +24 VDC power input on the serial system (type A, 4 pin M12 power connector, pin 1) or by K5030.M12 additional power supply module, in case it were installed upstream of the inputs module.

Technical characteristics	
Maximum current per module	300 mA
Protection	Overcurrent (auto-resettable fuse) Reverse polarity
Input impedence	$3 \mathrm{k} \Omega$
Maximum cable length	$<30 \mathrm{~m}$
Input data allocation	8 bit
InPUTS + 24VDC current consumption of the module only	5 mA

Coding: K5230.08.M8

Scheme / Overall dimensions and I/O layout

8 digital inputs module kit M12

M12 digital inputs module provides 4 M12, 5 pins, female connectors.
Inputs have PNP logic, + $24 \mathrm{VDC} \pm 10 \%$.
Coding: K5230.08.M12
Every connector takes two input channels.
It is possible to connect 2 wires devices (e.g. switches, magnetic limit switches, pressure switches, etc.) as well as 3 wires devices (e.g. proximity sensors, photocells, electronic magnetic limit switches, etc.).

Inputs module power supply is provided by +24 VDC power input on the serial system (type $\mathrm{A}, 4$ pin M12 power connector, pin 1) or by K5030.M12 additional power supply module, in case it were installed upstream of the inputs module.

Technical characteristics	
Maximum current per module	300 mA
Protection	Overcurrent (auto-resettable fuse) Reverse polarity
Input impedence	$3 \mathrm{k} \Omega$
Maximum cable length	$<30 \mathrm{~m}$
Input data allocation	8 bit
INPUTS +24 V DC current consumption of the module only	5 mA

Scheme / Overall dimensions and I/O layout

8 digital outputs module kit M8

M8 digital inputs module provides 8 M8, 3 pins, female connectors.
Outputs have PNP logic, + $24 \mathrm{VDC} \pm 10 \%$.
Outputs module power supply is provided by +24 V DC power input on the serial system (type A, 4 pins M12 power connector, pin 4)
or by K5030.M12 additional power supply module, in case it were installed upstream of the outputs module.
Power supply presence is displayed by "PWR OUT" green LED light-on
Each output has a LED indicator associated which lights up when output's signal status is high.

Technical characteristics	
Maximum current per output	100 mA
Protection	Short circuit (electronic), trigger at 2.8A
Maximum cable length	$<30 \mathrm{~m}$
Output data allocation	8 bit
OUTPUTS +24 VDC current consumption of the module only	15 mA

Coding: K5130.08.M8

8 digital outputs module kit M12

M12 digital inputs module provides 4 M12, 5 pins, female connectors.
Outputs have PNP logic, + $24 \mathrm{VDC} \pm 10 \%$.
Outputs module power supply is provided by +24 VDC power input on the serial system (type $\mathrm{A}, 4$ pins M12 power connector, pin 4) or by K5030.M12 additional power supply module, in case it were installed upstream of the outputs module.
Power supply presence is displayed by "PWR OUT" green LED light-on
Each output has a LED indicator associated which lights up when output's signal status is high.

Technical characteristics	
Maximum current per output	100 mA
Protection	Short circuit (electronic), trigger at 2.8A
Maximum cable length	$<30 \mathrm{~m}$
Output data allocation	8 bit
OUTPUTS + 24 V DC current consumption of the module only	15 mA

Coding: K5130.08.M12

Scheme / Overall dimensions and I/O layout

Solenoid valves manifold

EVO Electronics - Inputs and outputs modules

32 digital inputs module kit (37 pins SUB-D connector)

The module provides a SUB-D 37 pins female connector
Inputs have PNP logic, + 24 V DC $\pm 10 \%$.
It is possible to connect 2 wires devices (e.g. switches, magnetic limit switches, pressure switches, etc.) as well as 3 wires devices (e.g. proximity sensors, photocells, electronic magnetic limit switches, etc.).

Inputs module power supply is provided by +24 VDC power input on the serial system (type A, 4 pin M12 power connector, pin 1) or by K5030.M12 additional power supply module, in case it were installed upstream of the inputs module.

Technical characteristics	
Maximum current per module	
Protection	Overcurrent (auto-resettable fuse) Reverse polarity
Input impedence	$3 \mathrm{k} \Omega$
Maximum cable length	$<30 \mathrm{~m}$
Input data allocation	32 bit
INPUTS + 24 VDC current consumption of the module only	10 mA

Coding: K5230.32.37P

Scheme / Overall dimensions and I/O layout

SUB-D 37 pins connector

32 digital outputs module kit (37 pins SUB-D connector)

The module provides a SUB-D 37 pins female connector.
Outputs have PNP logic, + 24 V DC $\pm 10 \%$.
Outputs module power supply is provided by +24 VDC power input on the serial system (type $\mathrm{A}, 4$ pins M12 power connector, pin 4) or by K5030.M12 additional power supply module, in case it were installed upstream of the outputs module.
Power supply presence is displayed by "PWR OUT" green LED light-on.

Technical characteristics	
Maximum current per output	100 mA
Protection	Short circuit (electronic), trigger at 2.8A
Maximum cable length	$<30 \mathrm{~m}$
Output data allocation	32 bit
OUTPUTS +24 V DC current consumption of the module only	15 mA

Scheme / Overall dimensions and I/O layout

Analogue inputs module kit M8

M8 analogue inputs module converts analogue signals into digital signals and transfers acquired data to field bus, via network node.
Inputs module power supply is provided by +24 V DC power input on the serial system (type $\mathrm{A}, 4$ pin M12 power connector, pin 1) or by K5030.M12 additional power supply module, in case it were installed upstream of the inputs module.

Technical characteristics	
Protection (pin 1)	Overcurrent (auto-resettable fuse)
Input impedance (voltage inputs)	$33 \mathrm{k} \Omega$
Digital conversion resolution	12 bit
Maximum cable length	$<30 \mathrm{~m}$
Input data allocation	16 bit per channel
Diagnostic LED	Input signal overcurrent or overvoltage
Accuracy	$0,3 \%$ F.S.
Overall maximum current 2 channels (pin 1)	300 mA
Overall maximum current 4 channels (pin 1)	$750 \mathrm{~mA} \mathrm{(375mA} \mathrm{for} \mathrm{each} \mathrm{pair} \mathrm{of} \mathrm{channels)} 2$
INPUTS + 24 V DC current consumption of the module only	15 mA

Coding: K5230.OS

\boldsymbol{C}	CHANNELS
	$2=2$ channels
	$4=4$ channels
$\boldsymbol{*} \boldsymbol{S}$	SIGNAL
	T.00 $=\operatorname{VOLTAGE}(0-10 \mathrm{~V})$
	T. $01=\operatorname{VOLTAGE}(0-5 \mathrm{~V})$
	C. $00=\operatorname{CURRENT}(4-20 \mathrm{~mA})$
	$\mathbf{C l} .01=\operatorname{CURRENT}(0-20 \mathrm{~mA})$

Scheme / Overall dimensions and I/O layout

Analogue outputs module kit M8

M8 analogue outputs module converts output data, received from field bus via network node, into analogue signal. Outputs module power supply is provided by +24 VDC power input on the serial system (type $\mathrm{A}, 4$ pins M12 power connector, pin 4) or by K5030.M12 additional power supply module, in case it were installed upstream of the outputs module.

Technical characteristics	
Protection (pin 1)	Overcurrent (auto-resettable fuse)
Protection (pin 4)	Overcurrent (auto-resettable fuse)
Digital conversion resolution	12 bit
Maximum cable length	$<30 \mathrm{~m}$
Output data allocation	16 bit per channel
Diagnostic LED	Output signal overcurrent
Accuracy	0,3\% F.S.
Overall maximum current 2 channels (pin 1)	300 mA
Overall maximum current 4 channels (pin 1)	750 mA (375 mA for each pair of channels)
INPUTS + 24 V DC current consumption of the module only	15 mA
OUTPUTS + 24 V DC current consumption of the module only (2 channels)	35 mA
OUTPUTS + 24 V DC current consumption of the module only (4 channels)	70 mA

Coding: K5130.CS

C	CHANNELS
	$2=2$ channels
	$4=4$ channels
(S)	SIGNAL
	T. 00 = VOLTAGE (0-10V)
	T. $01=$ VOLTAGE (0-5V)
	C. $00=$ CURRENT ($4-20 \mathrm{~mA}$)
	C. 01 = CURRENT ($0-20 \mathrm{~mA}$)

Scheme / Overall dimensions and I/O layout

Pt100 inputs module kit

Pt100 inputs module digitizes signals from Pt100 probes and transfers acquired data to field bus, via network node It is possible to connect two, three or four wires probes.
Inputs module power supply is provided by +24 V DC power input on the serial system (type $\mathrm{A}, 4$ pin M12 power connector, pin 1) or by K5030.M12 additional power supply module, in case it were installed upstream of the inputs module.

Technical characteristics	
Digital conversion resolution	12 bit
Maximum cable length	$<30 \mathrm{~m}$
Input data allocation	16 bit per channel
Diagnostic LED	Probe presence
Accuracy	Temperature out of range
Probe temperature range	$\pm 0,2^{\circ} \mathrm{C}$
INPUTS +24 V DC current consumption of the module only (2 channels)	$-100^{\circ} \mathrm{C} \ldots+300^{\circ} \mathrm{C}$
INPUTS +24 VDC current consumption of the module only (4 channels)	25 mA

Conversion formula (${ }^{\circ} \mathrm{C}$)

$$
\text { Temperature }\left({ }^{\circ} \mathrm{C}\right)=\left(\frac{\text { Points }}{4095} \times 400\right)-100
$$

Coding: K5230.OP.0T

\boldsymbol{C}	CHANNELS
	$2=2$ channels
	$4=4$ channels
(1) TYPE	
	$0=$ Pt1002 wires
	$1=$ Pt1003 wires
	$2=$ Pt100 4 wires

Scheme / Overall dimensions and I/O layout

Solenoid valves manifold

EVO Electronics - Additional modules

Additional power supply module kit

Additional power supply module supplies additional electric power for downstream optional modules, where "downstream" means farther from serial node, resetting the current limits of the network node / IO-Link interface.
Electric connection of the module to external power supply unit occurs via an M12 4 pins type A male connector.
M12 connector has two different pins to power up logics and inputs (Pin 1) and outputs (Pin 4).
Presence of each power supply rail is indicated by corresponding green LED.
When using IO-Link interface, the additional power supply module is useful for separating the module power supplies of input from the output modules placed downstream.

Scheme / Overall dimensions and I/O layout

	M12 4P male M12A 4P	nector -4 -1
PIN	DESCRIPTION	MAX. CURRENT
1	$\begin{gathered} +24 \mathrm{~V} \text { DC } \\ \text { (LOGICS \& INPUTS) } \end{gathered}$	4 A
2	N.C.	-
3	0 V	4 A
4	+ 24 V DC (OUTPUTS)	4 A

POWER SUPPLY connectors
Straight connector M12A 4P female
Coding: 5312A.F04.00

PIN	DESCRIPTION
1	$+24 \mathrm{VDC}($ LOGICSAND INPUTS)
2	N.C.
3	0 V
4	+24 VDC (OUTPUTS)

Power supply socket

Upper view slave connector

NETWORK connectors

Straight connector M12A 5P female

Upper view slave connector
Straight connector M12A 5P male

Upper view slave connector

PIN	DESCRIPTION
1	(CAN_SHIELD)
2	(CAN_V+)
3	CAN_GND
4	CAN_H
5	CAN_L

Coding: 5312A.F05.00

Socket for bus CANopen ${ }^{\circledR}$ and IO-Link

Coding: 5312A.M05.00

Plug for bus CANopen ${ }^{*}$

Coding: 5312D.M04.00

PIN	SIGNAL	DESCRIPTION
1	TX+	EtherNet Transmit High
2	RX+	EtherNet Receive High
3	TX-	EtherNet Transmit Low
4	RX-	EtherNet Receive Low

Plug for bus EtherCAT® ${ }^{\circledR}$, PROFINET IO RT and EtherNet/IP

Trademarks: EtherCAT ${ }^{\circledR}$ is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.
Upper view slave connector
Straight connector M12B 5P female

Upper view slave connector
Straight connector M12B 5P male

Upper view slave connector

INPUTS connectors

Straight connector M12A 5P male

Straight connector M8 3P male

PIN	DESCRIPTION
1	+24 VDC
2	INPUTB
3	0 V
4	INPUTA
5	N.C.

Upper view slave connector

Coding: 5308A.M03.00
Plug for inputs modules
Coding: 5312A.M05.00
Plug for inputs modules
-

Coding: 5312B.F05.00

PIN	DESCRIPTION
1	Power Supply
2	A-Line
3	DGND
4	B-Line
5	SHIELD

PIN	DESCRIPTION
1	Power Supply
2	A-Line
3	DGND
4	B-Line
5	SHIELD

Coding: 5312B.M05.00

Socket for bus PROFIBUS DP

Plugs

M12 plug
Coding: 5300.T12

M8 plug

Coding: 5300.T08

\boldsymbol{C}	CABLE LENGTH
	$\mathbf{0 3}=3$ meters
	$\mathbf{0 5}=5$ meters
	$\mathbf{1 0}=10$ meters
C	CONNECTOR
	$\mathbf{1 0}=$ Stand alone
	$\mathbf{9 0}=90^{\circ}$ Angle

Cable complete with connector, 44 Poles, IP65

Coding: 2300.44.©.©

Coding: 2400.25.C. 25

Cable complete with connector, 37 Poles, IP65

Coding: 2400.37.(C. 37

PNEUMAX S.p.A.
Via Cascina Barbellina, 10 24050 Lurano (BG) - Italy

[^0]: Weight 116 g

[^1]: Example: If inlet pressure is set at 5 bar then pilot pressure must be at least $\mathrm{Pp}=2,5+(0,2 * 5)=3,5$ bar

[^2]: -Suitable module for vertical configuration
 -It allows you to shut-off and exhaust the supply port 1 and
 pilot port 14 or other modules mounted on it

