(08-Cylinders

- Basic information
- Cylinder operation diagram
- Air consumption
- Axial load
- End of stroke damping properties
- Pull/Push force
- Single acting cylinders spring forces
- End cap screws - maximum torque

Cylinders

Base principles

- Function

Cylinders are, together with some other items, the components of an automatic system that transform the pneumatic energy in labour
$\mathrm{L}=\mathrm{Fxs}$
(Labour=Force \times movement)
The theoretical force of a cylinder is directly proportional to the supply pressure and the surface upon which it acts (piston surface).

$$
\begin{gathered}
\text { F = P x S } \\
\text { (Force }=\text { Pression } \times \text { Superface })
\end{gathered}
$$

(On the inwards stroke the area on which the pressure acts is reduced by the area of the piston rod)
The true force fo the cylinder has to be calculated, bearing in mind :

- the friction of the seals during operation.
- the cylinder has to overcome the static friction generated by the seals before it can actually start moving. When a piston does not move for some time, the compression between the seals and barrel forces away the pre lubricating grease. When the cylinder is then operated it will therefore encounter a dry spot which will further increase breakaway friction.

Therefore, the real force is roughly 10-15\% lower than the theoretical force

Construction design

CYLINDER OPERATION DIAGRAM

A cylinder working cycle can be divided into 4 phases: start , acceleration, constant phase and cushioning. Consider the diagram below showing a cylinder in rest position (piston rod IN) connected to a $5 / 2$ valve (also in rest position (port 1 connected to port 2):
$\mathrm{P} 1=$ atmospheric pressure $\mathrm{P} 2=$ air line pressure (Pr)

Start:

- actuating the $5 / 2$ valve port 1 is connected to port 4 pressurizing the cylinder rear chamber ; in this conditions P1 increases while the front chamber exhaust the pressure through port 3 (port 2 connected to port 3) and therefore P2 decreases.
- theoretically when P1 reaches the same value of P2 the cylinder could start moving but in reality it still need to overcome friction and the load applied. When the Dp between the two pressures overcomes friction and load the cylinder will start moving

Acceleration:

The maximum speed is achieved at approximately $15-30 \%$ of the unit stroke and is inversely proportional to the exhaust chamber volume and thereby the stroke; therefore considering units with the same bore the shorter the stroke the greater the acceleration will be.

Constant phase:

The translation speed is not always constant and is effected by many factors such as friction, load applied, mounting position, valve flow rate etc... The cylinder speed can be controlled by regulating the exhaust flow rate, always considering that it is important to use a valve with the highest possible flow rate (see section 09 "sizing and choosing a cylinder and valve) as the regulated speed would be lower than the maximum speed given by the valve.

Cushioning:

Is the final stage of the stroke when the front chamber exhaust flow is regulated. Under these conditions P2 grows and counteracts P1 reducing the unit speed until the end of stroke where P1 reaches the maximum value given by the air supply and P2 equals the atmospheric pressure.

Cylinders

CYLINDER AIR CONSUMPTION

The air consumption corresponds to the volume of air that the cylinder uses in a complete cycle (stroke out and back in) at a specific pressure.

Consumption $=\mathrm{Pa} \times \mathrm{C} \times(\mathrm{A}+\mathrm{b})$

$\mathrm{Pa}=\quad$ Absolute pressure (bar)
C= Cylinder stroke (dm)
A= see tab. $1\left(\mathrm{dm}^{2}\right)$
b= seetab. $2\left(\mathrm{dm}^{2}\right)$
Air consumption is measured in Normal-liters (NI) which correspond to the volume that a specific quantity (mass) of gas would fill at atmospheric pressure.

Calculation example:

ISO 15552 cylinder - 1319 series:
Supply pressure 6 bar $\quad(\mathrm{Pa}=7 \mathrm{bar})$
stroke $50 \mathrm{~mm} \quad(C=0,5 \mathrm{dm})$
Ø63 ($\left.\mathrm{A}=0,31157 \mathrm{dm}^{2}\right)$
Rod $\varnothing=20 \mathrm{~mm} \quad\left(\mathrm{~b}=0,28017 \mathrm{dm}^{2}\right)$
Consumption $=7($ bar $) \times 0,5(\mathrm{dm}) \times(0,31157+0,28017)=\mathbf{2 , 0 7 2} \mathbf{N I}$
(In order to calculate the air consumption for a specific number of cycles it is sufficient to multiply the above value for the number of cycles)

\varnothing cylinder	A
Ø 8	0,00502 dm ${ }^{2}$
Ø 10	$0,00785 \mathrm{dm}^{2}$
Ø 12	0,01130 dm ${ }^{2}$
Ø 16	0,02010 dm ${ }^{2}$
Ø 20	$0,03140 \mathrm{dm}^{2}$
$\varnothing 25$	$0,04906 \mathrm{dm}^{2}$
Ø 32	$0,08038 \mathrm{dm}^{2}$
Ø 40	$0,12560 \mathrm{dm}^{2}$
$\varnothing 50$	0,19625 dm ${ }^{2}$
Ø 63	$0,31157 \mathrm{dm}^{2}$
Ø 80	$0,50240 \mathrm{dm}^{2}$
$\varnothing 100$	0,78500 dm ${ }^{2}$
Ø 125	$1,22656 \mathrm{dm}^{2}$
$\varnothing 160$	$2,00960 \mathrm{dm}^{2}$
$\varnothing 200$	$3,14000 \mathrm{dm}^{2}$

Surface difference
Cylinder piston / rod Ø

Ø cylinder - \varnothing rod	b
Ø $8-\varnothing 4$	$0,00377 \mathrm{dm}^{2}$
Ø10-Ø 4	$0,00659 \mathrm{dm}^{2}$
Ø12-Ø6	$0,00848 \mathrm{dm}^{2}$
$\varnothing 16$ - Ø6	$0,01727 \mathrm{dm}^{2}$
Ø $20-\varnothing 8$	$0,02638 \mathrm{dm}^{2}$
Ø25-Ø10	$0,04121 \mathrm{dm}^{2}$
Ø32-Ø 12	$0,06908 \mathrm{dm}^{2}$
Ø 40 - Ø 14	$0,11021 \mathrm{dm}^{2}$
$\varnothing 40-Ø 16$	$0,10550 \mathrm{dm}^{2}$
Ø 40 - Ø 18	$0,10017 \mathrm{dm}^{2}$
Ø $50-Ø 14$	$0,18086 \mathrm{dm}^{2}$
$\varnothing 50-\varnothing 18$	$0,17082 \mathrm{dm}^{2}$
Ø $50-\varnothing 20$	$0,16485 \mathrm{dm}^{2}$
Ø63-Ø 20	$0,28017 \mathrm{dm}^{2}$
Ø63-Ø22	$0,27357 \mathrm{dm}^{2}$
Ø80-Ø 22	$0,46441 \mathrm{dm}^{2}$
Ø80-Ø25	$0,45334 \mathrm{dm}^{2}$
Ø100-Ø 25	$0,73594 \mathrm{dm}^{2}$
Ø100-Ø 30	$0,71435 \mathrm{dm}^{2}$
Ø125-Ø 30	$1,15591 \mathrm{dm}^{2}$
Ø125-Ø 32	$1,14618 \mathrm{dm}^{2}$
Ø160-Ø 40	$1,88400 \mathrm{dm}^{2}$
$\varnothing 200-\varnothing 40$	$3,01440 \mathrm{dm}^{2}$

Allowed axial load (combined bending and compressing load)

This is the maximum load that can be applied axially on the rod tip. Above this value the rod might bend under compression. This value depends on a number of factors such as load size, rod diameter, the distance at which the load is applied (bending and compressing length L) and the conditions under which the load is applied (cylinder mountings).
Among the possible conditions, the following three are the most common.

The maximum axial load can be calculated in two ways: In an empirical way (see equations) or by checking the following diagram which shows the worst possible conditions (case 1 \& 2) For all other possible mountings alternatives the axial load will surely be higher.

```
Fk}=\frac{\mp@subsup{p}{}{3}\timesE\times\mp@subsup{d}{}{4}}{64\times\mp@subsup{L}{}{2}\timesC
```

$d=\sqrt{\frac{F k \times 64 \times L^{2} \times C}{p^{3} \times E}}$

Cylinder $\varnothing 80 \mathrm{~mm}$
Rod diameter ø20 mm
Stroke 600 mm
Mounting CASE2 intermediate trunnion: LO $=290 \mathrm{~mm}$
Carico 2000 N
L (distance) $=29+60=89 \mathrm{~cm}$
$\mathrm{Fk}=\left(\mathrm{p}^{3} \times 2,1 \times 10^{7} \times 2^{4}\right):\left(64 \times 89^{2} \times 5\right)=4104 \mathrm{~N}$
(Above the 2000 N applied)

Example: rod diameter sizing

Considering the same conditions as in the above case we need to determinate the rod diameter suitable to withstand a 4000 N load
$d=\sqrt{\left(4000 \times 64 \times 89^{2} \times 5\right) /\left(p^{3} \times 2,1 \times 10^{7}\right)}=2 \mathrm{~cm}$

The diameter to choose is the next one up : $\varnothing 25 \mathrm{~mm}$

Also this second example can be resolved using the below diagram: following the bending and compression distance line relative to 900 mm up to the intersection with the 4000N maximum load we obtain $\varnothing 20 \mathrm{~mm}$.
$\mathrm{E}=$ rod material coefficient of elasticity ($\mathrm{N} / \mathrm{cm}^{2}$) (steel $=2,1 \times 10^{7} \mathrm{~N} / \mathrm{cm}^{2}$)
$\mathrm{d}=$ rod diameter (cm)
$\mathrm{L}=$ bending and compression distance (cm)
$C=$ safety factor (da 2,5 a 5)

Example: Axial load verification
The same result can be obtained using the below diagram : following the bending and compression distance line relative to 900 mm up to the intersection with the 20 mm Ø line we obtain 4000 N .

With the third equation or using the diagram it is possible to calculate the bending and compression distance.

Axial load diagram

END OF STROKE CUSHIONING CAPABILITY

The function of the end of stroke cushioning is to reduce the kinetic energy generated by movement of the load and to prevent high speed impact between the piston and end caps that could compromise the unit functionality. The use of non-cushioned cylinders is not recomended on high speed applications unless external means of deceleration (such as dampers) are used.

The maximum load that can be cushioned depends on the speed of the unit and the cylinder cushioning capacity. The chartbelow shows the values relative to the ISO 15552 series cylinders considering the out stroke movement and a supply pressure of 6 bar. The acceptable values for any diameter are those found below each size line.

THEORETICAL FORCE -PUSH- (N) - rod moving out

$\begin{aligned} & \text { Bore } \\ & (\mathrm{mm}) \end{aligned}$	Push area (mm^{2})	Feeding pressure (bar)									
		1	2	3	4	5	6	7	8	9	10
$\varnothing 6$	28	2,5	5,5	8	11	13,5	16,5	19	22	24,5	27,5
Ø8	50	4,5	9,5	14,5	19,5	24,5	29,5	34	39	44	49
Ø10	79	7,5	15	23	30,5	38	46	53,5	61,5	69	76,5
Ø12	113	11	22	33	44	55	66	77	88	99	110
Ø16	201	19	39	59	78	98	118	137	157	177	197
Ø20	314	30	61	92	123	153	184	215	246	277	307
Ø25	491	48	96	144	192	240	288	336	384	433	481
Ø32	804	78	157	236	315	394	472	551	630	709	788
Ø40	1.256	123	246	369	492	615	739	862	985	1.108	1.231
Ø50	1.963	192	384	577	769	962	1.154	1.347	1.539	1.732	1.924
Ø63	3.116	305	611	916	1.222	1,527	1.833	2.138	2.444	2.749	3.055
Ø80	5.024	492	985	1.478	1.970	2,463	2.956	3.448	3.941	4.434	4.926
Ø100	7.850	769	1.539	2.309	3.079	3,849	4.618	5.388	6.158	6.928	7.698
Ø125	12.266	1.202	2.405	3.608	4.811	6,014	7.217	8.419	9.622	10.825	12.028
Ø160	20.096	1.970	3.941	5.912	7.882	9.853	11.824	13.795	15.765	17.736	19.707
Ø200	31.400	3.079	6.158	9.237	12.317	15.396	18.475	21.555	24.634	27.713	30.792
Ø250	49.063	4.811	9.622	14.434	19.245	24.056	28.868	33.679	38.491	43.302	48.113

The following equations is used to calculate the force generated in the return stroke (rod moving back in) F [N] = (Cylinder area - Rod area) [mm^{2}] x Pressure [bar] x 9,81

In order to obtain the cylinder real force, reduce the theoretical value by 10-15\%
Surface difference - Cylinder piston / rod Ø

\varnothing cylinder - \varnothing rod	b
Ø 8 - $\varnothing 4$	$0,377 \mathrm{~cm}^{2}$
Ø10-Ø 4	0,659 cm ${ }^{2}$
Ø12-Ø6	0,848 cm ${ }^{2}$
Ø16-Ø6	1,727 cm ${ }^{2}$
Ø $20-\varnothing 8$	2,638 cm^{2}
$\varnothing 25-\varnothing 10$	$4,121 \mathrm{~cm}^{2}$
Ø $32-\varnothing 12$	$6,908 \mathrm{~cm}^{2}$
$\varnothing 40-\varnothing 14$	$11,021 \mathrm{~cm}^{2}$
$\varnothing 40-\varnothing 16$	$10,550 \mathrm{~cm}^{2}$
$\varnothing 40-\varnothing 18$	$10,017 \mathrm{~cm}^{2}$
Ø50-Ø 14	$18,086 \mathrm{~cm}^{2}$
Ø50-Ø 18	$17,082 \mathrm{~cm}^{2}$
Ø 50-Ø 20	$16,485 \mathrm{~cm}^{2}$
$\varnothing 63-\varnothing 20$	$28,017 \mathrm{~cm}^{2}$
Ø63-Ø 22	$27,357 \mathrm{~cm}^{2}$
Ø80-Ø 22	$46,441 \mathrm{~cm}^{2}$
$\varnothing 80-\varnothing 25$	$45,334 \mathrm{~cm}^{2}$
$\varnothing 100-\varnothing 25$	$73,594 \mathrm{~cm}^{2}$
$\varnothing 100-\varnothing 30$	$71,435 \mathrm{~cm}^{2}$
$\varnothing 125-\varnothing 30$	$115,591 \mathrm{~cm}^{2}$
$\varnothing 125-\varnothing 32$	$114,618 \mathrm{~cm}^{2}$
$\varnothing 160-\varnothing 40$	$188,400 \mathrm{~cm}^{2}$
$\varnothing 200-\varnothing 40$	$301,440 \mathrm{~cm}^{2}$

tab. 2

Cylinders

SINGLE ACTING CYLINDER SPRING INITIAL AND FINAL LOAD CHARACTERISTICS.

Microcylinders ISO 6431-1260 series			Bore						
	front spring	rear spring	012	$Ø 16$	$Ø 20$	Ø25	$Ø 32$	Ø40	Ø50
Initial load (N) external spring	$\Downarrow \sqrt{W}$	$\triangle M$	9,9	10,8	10,8	7,9	19,7	39,3	39,3
Final load (N) compressed load	\#	$\xrightarrow{\square+}$	26,5	22,6	22,6	49,1	53,0	106,0	106,0
			(stroke 0-40 mm)						
Microcylinders ISO 6431-1280 series "MIR"			Bore						
	front spring	rear spring	Ø8	$\emptyset 10$	$\emptyset 12$	Ø16	$\varnothing 20$	Ø25	Ø 32
Initial load (N) external spring	$\sqrt[W]{ }$	$\triangle N$	2,2	2,2	4,0	7,5	11,0	16,5	23,0
Final load (N) compressed load	\#1	$\xrightarrow{\square+}$	4,2	4,2	8,7	21,0	22,0	30,7	52,5

Cylinders ISO 15552-1319-20-21 series			Bore					
	front spring	rear spring	Ø32	$\emptyset 40$	Ø50	Ø63	$\varnothing 80$	$\varnothing 100$
Initial load (N) external spring	\sqrt{W}	$\triangle M$	17,2	24,6	51,0	51,0	98,1	98,1
Final load (N) compressed load	㲎	$\xrightarrow{\square}$	41,7	83,4	114,8	114,8	194,2	194,2

Short stroke compact cylinders			Bore								
	front spring	rear spring	Ø20	Ø25	Ø32	$\bigcirc 40$	$\bigcirc 50$	Ø63	Ø80	0100	
Initial load (N) external spring	$\\| \sqrt{\sqrt{s}}$	$\triangle M$	7,9	9,9	34,4	34,4	50,1	54,0	117,7	108,9	
Final load (N) compressed load	\square	$\xrightarrow{\\| \square}$	27,5	26,5	59,9	63,8	79,5	85,4	157,0	134,4	

(stroke 0-10 mm)

"Europe" Compact cylinders			Bore									
	front spring	rear spring	Ø12	$\varnothing 16$	Ø20	Ø25	Ø32	$\emptyset 40$	Ø50	Ø63	Ø80	$\varnothing 100$
Initial load (N) external spring	$\sqrt[W]{ }$	$\triangle N_{T}$	3,9	4,4	4,9	9,8	12,3	16,7	27,5	37,3	59,4	101,3
Final load (N) compressed load	\square	$\xrightarrow{\square}$	9,3	17,7	18,1	25,5	34,3	44,1	51,0	63,8	99,4	141,9

CYLINDER NUTS RECOMMENDED TIGHTENING TORQUE

Bore size	Torque (Nm)
$\varnothing 32$	8
$\varnothing 40$	8
$\varnothing 50$	16
$\varnothing 63$	16
$\varnothing 80$	22
$\varnothing 100$	22
$\varnothing 125$	30
$\varnothing 160$	85
$\varnothing 200$	85

