CATGEN-EN

Overall dimensions and technical information are provided solely for informative purposes and may be modified without notice. A|11 Load position Vertical lift (pull upwards): the real force generated by the cylinder must be sufficient to counterbalance the load and to accelerate it. Example: Weight to be lifted 120Kg Working pressure 6 bar Load ratio 70% Using the load ratio equation it is possible to calculate the force needed to lift the load: Available force = Load x 100 the result is 171,4 daN Rdc A 63 bore cylinder which generates a theoretical force of 187 daN is suitable for the application. A similar load ratio allows, using unidirectional flow regulators, good speed control. When the speed is below 20mm/sec. It is difficult to properly control the movement. The load ratio must be reduced to 50% on slow speed applications. In these conditions, or where constant movement is required, the use of a hydraulic speed control unit is recommended. On applications were the load is moving downwards, thereby increasing the force generated by the actuator, it is usually necessary to use flow regulators. Horizontal or inclined movement: If the load is supported and the working position is horizontal, it is necessary to multiply the needed force by the coefficient of friction. The coefficient of friction m varies according to the material. For example considering m= 0.4 Weight to be moved 120Kg Pressure 6 bar Load ratio 70% Solving the load ratio equation it is possible to calculate the available force: Available force = Load x 100 which, in the above conditions is 68,57 daN Rdc A Ø40 bore cylinder that generates a theoretical force of 75.4 daN is suitable for the application. In cases of inclined application the required force increases according to the angle. Also in these conditions it is necessary to multiply the needed force by a coefficient of friction. THEORETICAL FORCE -PUSH- (N) - rod moving out Bore (mm) Push area (mm2) Feeding pressure (bar) 1 2 3 4 5 6 7 8 9 10 Ø 6 28 2,5 5,5 8 11 13,5 16,5 19 22 24,5 27,5 Ø 8 50 4,5 9,5 14,5 19,5 24,5 29,5 34 39 44 49 Ø 10 79 7,5 15 23 30,5 38 46 53,5 61,5 69 76,5 Ø 12 113 11 22 33 44 55 66 77 88 99 110 Ø 16 201 19 39 59 78 98 118 137 157 177 197 Ø 20 314 30 61 92 123 153 184 215 246 277 307 Ø 25 491 48 96 144 192 240 288 336 384 433 481 Ø 32 804 78 157 236 315 394 472 551 630 709 788 Ø 40 1.256 123 246 369 492 615 739 862 985 1.108 1.231 Ø 50 1.963 192 384 577 769 962 1.154 1.347 1.539 1.732 1.924 Ø 63 3.116 305 611 916 1.222 1,527 1.833 2.138 2.444 2.749 3.055 Ø 80 5.024 492 985 1.478 1.970 2,463 2.956 3.448 3.941 4.434 4.926 Ø 100 7.850 769 1.539 2.309 3.079 3,849 4.618 5.388 6.158 6.928 7.698 Ø 125 12.266 1.202 2.405 3.608 4.811 6,014 7.217 8.419 9.622 10.825 12.028 Ø 160 20.096 1.970 3.941 5.912 7.882 9.853 11.824 13.795 15.765 17.736 19.707 Ø 200 31.400 3.079 6.158 9.237 12.317 15.396 18.475 21.555 24.634 27.713 30.792 Ø 250 49.063 4.811 9.622 14.434 19.245 24.056 28.868 33.679 38.491 43.302 48.113 Surface difference - Cylinder piston / rod Ø Ø cylinder - Ø rod b Ø 8 - Ø 4 0,377 cm2 Ø 10 - Ø 4 0,659 cm2 Ø 12 - Ø 6 0,848 cm2 Ø 16 - Ø 6 1,727 cm2 Ø 20 - Ø 8 2,638 cm2 Ø 25 - Ø 10 4,121 cm2 Ø 32 - Ø 12 6,908 cm2 Ø 40 - Ø 14 11,021 cm2 Ø 40 - Ø 16 10,550 cm2 Ø 40 - Ø 18 10,017 cm2 Ø 50 - Ø 14 18,086 cm2 Ø 50 - Ø 18 17,082 cm2 Ø 50 - Ø 20 16,485 cm2 Ø 63 - Ø 20 28,017 cm2 Ø 63 - Ø 22 27,357 cm2 Ø 80 - Ø 22 46,441 cm2 Ø 80 - Ø 25 45,334 cm2 Ø 100 - Ø 25 73,594 cm2 Ø 100 - Ø 30 71,435 cm2 Ø 125 - Ø 30 115,591 cm2 Ø 125 - Ø 32 114,618 cm2 Ø 160 - Ø 40 188,400 cm2 Ø 200 - Ø 40 301,440 cm2 tab.2 APPENDIX A Appendix Dimensioning Solutions for pneumatic automation General Catalogue

RkJQdWJsaXNoZXIy NzYzOTY1